Home
Class 12
MATHS
The value of lim(x rarr 0) (1)/(x) [ tan...

The value of `lim_(x rarr 0) (1)/(x) [ tan^(-1) ((x+1)/(2x+1)) - (pi)/(4) ]` is

A

1

B

`-(1)/(2)`

C

2

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \[ \lim_{x \to 0} \frac{1}{x} \left( \tan^{-1} \left( \frac{x+1}{2x+1} \right) - \frac{\pi}{4} \right), \] we can follow these steps: ### Step 1: Rewrite the limit expression We start with the limit expression: \[ \lim_{x \to 0} \frac{1}{x} \left( \tan^{-1} \left( \frac{x+1}{2x+1} \right) - \frac{\pi}{4} \right). \] ### Step 2: Use the property of the arctangent function Recall that \[ \tan^{-1}(a) - \tan^{-1}(b) = \tan^{-1}\left(\frac{a - b}{1 + ab}\right). \] In our case, we can set \( a = \frac{x+1}{2x+1} \) and \( b = 1 \) (since \(\tan^{-1}(1) = \frac{\pi}{4}\)). Thus, we can rewrite the expression as: \[ \tan^{-1} \left( \frac{\frac{x+1}{2x+1} - 1}{1 + \frac{x+1}{2x+1} \cdot 1} \right). \] ### Step 3: Simplify the expression inside the arctangent Calculating \( \frac{x+1}{2x+1} - 1 \): \[ \frac{x+1 - (2x + 1)}{2x + 1} = \frac{-x}{2x + 1}. \] Now, for the denominator: \[ 1 + \frac{x+1}{2x+1} = \frac{(2x + 1) + (x + 1)}{2x + 1} = \frac{3x + 2}{2x + 1}. \] Thus, we have: \[ \tan^{-1} \left( \frac{-x/(2x+1)}{(3x + 2)/(2x + 1)} \right) = \tan^{-1} \left( \frac{-x}{3x + 2} \right). \] ### Step 4: Substitute back into the limit Now substituting back into the limit, we have: \[ \lim_{x \to 0} \frac{1}{x} \left( \tan^{-1} \left( \frac{-x}{3x + 2} \right) \right). \] ### Step 5: Apply the limit As \( x \to 0 \), \( \tan^{-1}(-x/(3x + 2)) \) approaches \( \tan^{-1}(0) = 0 \). We can use the approximation \( \tan^{-1}(u) \approx u \) for small \( u \): \[ \tan^{-1} \left( \frac{-x}{3x + 2} \right) \approx \frac{-x}{3x + 2}. \] Thus, we rewrite the limit: \[ \lim_{x \to 0} \frac{1}{x} \left( \frac{-x}{3x + 2} \right) = \lim_{x \to 0} \frac{-1}{3x + 2}. \] ### Step 6: Evaluate the limit Now we can evaluate the limit: \[ \lim_{x \to 0} \frac{-1}{3x + 2} = \frac{-1}{2}. \] ### Final Answer Therefore, the value of the limit is: \[ \boxed{-\frac{1}{2}}. \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS CONTINUITY AND DIFFERENTIABILITY

    BITSAT GUIDE|Exercise BITSAT Archives |28 Videos
  • INDEFINITE INTEGRAL

    BITSAT GUIDE|Exercise BITSAT Archives |14 Videos
  • LINEAR PROGRAMMING

    BITSAT GUIDE|Exercise BITSAT ARCHIVES|3 Videos

Similar Questions

Explore conceptually related problems

lim_ (x rarr0) (1) / (x) [tan ^ (- 1) ((x + 1) / (2x + 1)) - (pi) / (4)] =?

The value of lim_(x rarr0)(1+(1)/(x))^(x) is-

The value of lim_(x rarr0)(e^(x)-1)/(x) is-

Evaluate "lim_(x rarr0)x tan(1/x)

the value of lim_(x rarr0)(1+2x)^((1)/(x))

lim_(x rarr0)((1)/(x))^(tan x)=

Evaluate: lim_(x rarr0)(1)/(x)sin^(-1)((2x)/(1+x^(2)))

The value of lim_(x rarr0)(e-(1+x)^((1)/(x)))/(tan x) is

The value of lim_(x rarr0)((e^(1/x^(2))-1)/(e^(1/x^(2)+1))) is :

The value of limit lim_(x rarr0)[(1)/(x^(2))-(1)/(sin^(2)x)]

BITSAT GUIDE-LIMITS CONTINUITY AND DIFFERENTIABILITY -BITSAT Archives
  1. The value of lim(x rarr 0) (1)/(x) [ tan^(-1) ((x+1)/(2x+1)) - (pi)/(4...

    Text Solution

    |

  2. lim(x rarr 0) (1+x)^(8)-1 is equal

    Text Solution

    |

  3. lim(x rarr tan^(-1) 3) (tan^(2) x -2 tan x -3)/(tan^(2)x-4 tan x +3) ...

    Text Solution

    |

  4. lim ( xrarr -oo) (x^(4).sin((1)/(x))+x^(2))/(1+|x|^(3)) is equal to

    Text Solution

    |

  5. lim(x rarr 1) (x^(m)-1)/(x^(n)-1) is equal to

    Text Solution

    |

  6. If f(x) = = {{:([tan ((pi)/(4)+x)]^(1//x),x ne0),(k ,x=0):} For what...

    Text Solution

    |

  7. The value of lim(x rarr 0) ((1+5x^(2))/(1+3x^(2)))^(1/x^2) is

    Text Solution

    |

  8. lim(x rarr 0) ((2+x) sin (2+x) - 2 sin2)/(x) is equal to

    Text Solution

    |

  9. If f(x)=((3x+tan^(2) x)/x) is continuous at x=0, then f(0) is equal to...

    Text Solution

    |

  10. If f(x) = (log (1+ax)-log (1-bx))/(x) for x ne 0 and f(0) = k and f(x...

    Text Solution

    |

  11. lim(x rarr0) (sin x)/(x)

    Text Solution

    |

  12. lim(x->0)(cos(sinx)-1)/(x^2)

    Text Solution

    |

  13. In order that the function f(x) = (x+1)^(1/x) is continuous at x = 0, ...

    Text Solution

    |

  14. The function f (x ) = |x | at x = 0 is

    Text Solution

    |

  15. lim(x rarr 0) (cosec x )^(1//"log"x) is equal to

    Text Solution

    |

  16. The value of lim(xtooo)((x+6)/(x+1))^(x+4), is

    Text Solution

    |

  17. The set of points where the function f(x) = x |x| is differentiable i...

    Text Solution

    |

  18. lim(x->2)(sqrt(1+sqrt(2+x))-sqrt(3))/(x-2) is equal to

    Text Solution

    |

  19. lim(x rarr 1) (1-x) tan((pi x)/2)

    Text Solution

    |

  20. If f: R rarr R is defined by f(x) = [ x -3] + | x-4| for x in R then...

    Text Solution

    |

  21. If f : R rarr R is defined by f(x) = {{:((cos 3x-cosx )/(x^(2)), "f...

    Text Solution

    |