Home
Class 12
MATHS
Find The value of lim(x rarr pi) (1+cos^...

Find The value of `lim_(x rarr pi) (1+cos^(3)x)/(sin^(2) x)` is

A

`(1)/(3) `

B

`(3)/(2) `

C

`(-1)/(4) `

D

`(-3)/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of the limit \[ \lim_{x \to \pi} \frac{1 + \cos^3 x}{\sin^2 x}, \] we will follow these steps: ### Step 1: Direct Substitution First, we substitute \(x = \pi\) directly into the expression: - The numerator becomes: \[ 1 + \cos^3(\pi) = 1 + (-1)^3 = 1 - 1 = 0. \] - The denominator becomes: \[ \sin^2(\pi) = 0^2 = 0. \] Since both the numerator and denominator evaluate to 0, we have an indeterminate form \( \frac{0}{0} \). ### Step 2: Apply L'Hôpital's Rule Since we have an indeterminate form, we can apply L'Hôpital's Rule, which states that if \(\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{0}{0}\) or \(\frac{\infty}{\infty}\), then: \[ \lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}, \] provided that the limit on the right exists. Let: - \(f(x) = 1 + \cos^3 x\) - \(g(x) = \sin^2 x\) Now, we need to find the derivatives \(f'(x)\) and \(g'(x)\). ### Step 3: Differentiate the Numerator and Denominator 1. Differentiate \(f(x)\): \[ f'(x) = \frac{d}{dx}(1 + \cos^3 x) = 0 + 3\cos^2 x \cdot (-\sin x) = -3\cos^2 x \sin x. \] 2. Differentiate \(g(x)\): \[ g'(x) = \frac{d}{dx}(\sin^2 x) = 2\sin x \cos x. \] ### Step 4: Rewrite the Limit Now we can rewrite the limit using L'Hôpital's Rule: \[ \lim_{x \to \pi} \frac{f'(x)}{g'(x)} = \lim_{x \to \pi} \frac{-3\cos^2 x \sin x}{2\sin x \cos x}. \] ### Step 5: Simplify the Expression We can simplify the expression: \[ = \lim_{x \to \pi} \frac{-3\cos^2 x}{2\cos x} = \lim_{x \to \pi} \frac{-3\cos x}{2}. \] ### Step 6: Substitute \(x = \pi\) Now we substitute \(x = \pi\): \[ = \frac{-3\cos(\pi)}{2} = \frac{-3(-1)}{2} = \frac{3}{2}. \] ### Final Answer Thus, the value of the limit is \[ \frac{3}{2}. \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS CONTINUITY AND DIFFERENTIABILITY

    BITSAT GUIDE|Exercise BITSAT Archives |28 Videos
  • INDEFINITE INTEGRAL

    BITSAT GUIDE|Exercise BITSAT Archives |14 Videos
  • LINEAR PROGRAMMING

    BITSAT GUIDE|Exercise BITSAT ARCHIVES|3 Videos

Similar Questions

Explore conceptually related problems

lim_(x rarr0)(1-cos^(3)x)/(x sin2x)

value of lim_(x rarr0)(1-cos^(3)x)/(x sin x*cos x) is

lim_(x rarr (pi/2)) (cos^2x)/(1-sin^2x) =

lim_ (x rarr pi) (1 + cos x) / (tan ^ (2) x)

lim_ (x rarr pi) (sin3x) / (sin2x)

lim_ (x rarr pi) (1 + cos x) / (x-pi)

lim_ (x rarr pi) ((1 + cos x) / (tan ^ (2) x))

find the value lim_(x rarr0)(1-cos x)/(sin^(2)x)

value of lim_(x rarr0)((1-cos2x)sin11x)/(x^(2)sin7x) is

Find the value of lim_(x rarr0)(sqrt(2)-sqrt(1+cos x))/(sin^(2)x)

BITSAT GUIDE-LIMITS CONTINUITY AND DIFFERENTIABILITY -BITSAT Archives
  1. Find The value of lim(x rarr pi) (1+cos^(3)x)/(sin^(2) x) is

    Text Solution

    |

  2. lim(x rarr 0) (1+x)^(8)-1 is equal

    Text Solution

    |

  3. lim(x rarr tan^(-1) 3) (tan^(2) x -2 tan x -3)/(tan^(2)x-4 tan x +3) ...

    Text Solution

    |

  4. lim ( xrarr -oo) (x^(4).sin((1)/(x))+x^(2))/(1+|x|^(3)) is equal to

    Text Solution

    |

  5. lim(x rarr 1) (x^(m)-1)/(x^(n)-1) is equal to

    Text Solution

    |

  6. If f(x) = = {{:([tan ((pi)/(4)+x)]^(1//x),x ne0),(k ,x=0):} For what...

    Text Solution

    |

  7. The value of lim(x rarr 0) ((1+5x^(2))/(1+3x^(2)))^(1/x^2) is

    Text Solution

    |

  8. lim(x rarr 0) ((2+x) sin (2+x) - 2 sin2)/(x) is equal to

    Text Solution

    |

  9. If f(x)=((3x+tan^(2) x)/x) is continuous at x=0, then f(0) is equal to...

    Text Solution

    |

  10. If f(x) = (log (1+ax)-log (1-bx))/(x) for x ne 0 and f(0) = k and f(x...

    Text Solution

    |

  11. lim(x rarr0) (sin x)/(x)

    Text Solution

    |

  12. lim(x->0)(cos(sinx)-1)/(x^2)

    Text Solution

    |

  13. In order that the function f(x) = (x+1)^(1/x) is continuous at x = 0, ...

    Text Solution

    |

  14. The function f (x ) = |x | at x = 0 is

    Text Solution

    |

  15. lim(x rarr 0) (cosec x )^(1//"log"x) is equal to

    Text Solution

    |

  16. The value of lim(xtooo)((x+6)/(x+1))^(x+4), is

    Text Solution

    |

  17. The set of points where the function f(x) = x |x| is differentiable i...

    Text Solution

    |

  18. lim(x->2)(sqrt(1+sqrt(2+x))-sqrt(3))/(x-2) is equal to

    Text Solution

    |

  19. lim(x rarr 1) (1-x) tan((pi x)/2)

    Text Solution

    |

  20. If f: R rarr R is defined by f(x) = [ x -3] + | x-4| for x in R then...

    Text Solution

    |

  21. If f : R rarr R is defined by f(x) = {{:((cos 3x-cosx )/(x^(2)), "f...

    Text Solution

    |