Home
Class 12
MATHS
The value of lim(x rarr oo) ((x+2)!+ (x+...

The value of `lim_(x rarr oo) ((x+2)!+ (x+1)!)/((x+2)!-(x+1)!)` is

A

1

B

2

C

3

D

4

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit problem \( \lim_{x \to \infty} \frac{(x+2)! + (x+1)!}{(x+2)! - (x+1)!} \), we can follow these steps: ### Step 1: Rewrite the factorials We can express \( (x+2)! \) in terms of \( (x+1)! \): \[ (x+2)! = (x+2)(x+1)! \] Substituting this into the limit expression gives: \[ \lim_{x \to \infty} \frac{(x+2)(x+1)! + (x+1)!}{(x+2)(x+1)! - (x+1)!} \] ### Step 2: Factor out \( (x+1)! \) Now we can factor \( (x+1)! \) out of both the numerator and the denominator: \[ = \lim_{x \to \infty} \frac{(x+1)! \left((x+2) + 1\right)}{(x+1)! \left((x+2) - 1\right)} \] This simplifies to: \[ = \lim_{x \to \infty} \frac{(x+1)! (x+3)}{(x+1)! (x+1)} \] ### Step 3: Cancel \( (x+1)! \) Since \( (x+1)! \) is common in both the numerator and the denominator, we can cancel it: \[ = \lim_{x \to \infty} \frac{x+3}{x+1} \] ### Step 4: Simplify the limit Now we can simplify the expression: \[ = \lim_{x \to \infty} \frac{x+3}{x+1} = \lim_{x \to \infty} \frac{1 + \frac{3}{x}}{1 + \frac{1}{x}} \] ### Step 5: Evaluate the limit As \( x \to \infty \), \( \frac{3}{x} \to 0 \) and \( \frac{1}{x} \to 0 \): \[ = \frac{1 + 0}{1 + 0} = 1 \] ### Final Answer Thus, the value of the limit is: \[ \boxed{1} \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS CONTINUITY AND DIFFERENTIABILITY

    BITSAT GUIDE|Exercise BITSAT Archives |28 Videos
  • INDEFINITE INTEGRAL

    BITSAT GUIDE|Exercise BITSAT Archives |14 Videos
  • LINEAR PROGRAMMING

    BITSAT GUIDE|Exercise BITSAT ARCHIVES|3 Videos

Similar Questions

Explore conceptually related problems

lim_(x rarr oo)(x-1)/(x)

lim_(x rarr oo)(x)/(x+1)

lim_(x rarr oo)(1)/(x^(2))

lim_(x rarr oo)(1)/(x^(2))

The value of lim_(x rarr oo)[((x+1)^(2)-1)/(x)] is

The value of lim_(x rarr oo)[((x+1)^(2)-1)/(x)] is

lim_ (x rarr oo) ((x + 2) / (x-1)) ^ (x-3)

The value of lim_(x rarr oo)((ln x)^(2))/(x^(2)) is

lim_ (x rarr oo) (1+ (2) / (x)) ^ (x)

lim_ (x rarr oo) ((x-1) / (x + 1)) ^ (x + 2)

BITSAT GUIDE-LIMITS CONTINUITY AND DIFFERENTIABILITY -BITSAT Archives
  1. The value of lim(x rarr oo) ((x+2)!+ (x+1)!)/((x+2)!-(x+1)!) is

    Text Solution

    |

  2. lim(x rarr 0) (1+x)^(8)-1 is equal

    Text Solution

    |

  3. lim(x rarr tan^(-1) 3) (tan^(2) x -2 tan x -3)/(tan^(2)x-4 tan x +3) ...

    Text Solution

    |

  4. lim ( xrarr -oo) (x^(4).sin((1)/(x))+x^(2))/(1+|x|^(3)) is equal to

    Text Solution

    |

  5. lim(x rarr 1) (x^(m)-1)/(x^(n)-1) is equal to

    Text Solution

    |

  6. If f(x) = = {{:([tan ((pi)/(4)+x)]^(1//x),x ne0),(k ,x=0):} For what...

    Text Solution

    |

  7. The value of lim(x rarr 0) ((1+5x^(2))/(1+3x^(2)))^(1/x^2) is

    Text Solution

    |

  8. lim(x rarr 0) ((2+x) sin (2+x) - 2 sin2)/(x) is equal to

    Text Solution

    |

  9. If f(x)=((3x+tan^(2) x)/x) is continuous at x=0, then f(0) is equal to...

    Text Solution

    |

  10. If f(x) = (log (1+ax)-log (1-bx))/(x) for x ne 0 and f(0) = k and f(x...

    Text Solution

    |

  11. lim(x rarr0) (sin x)/(x)

    Text Solution

    |

  12. lim(x->0)(cos(sinx)-1)/(x^2)

    Text Solution

    |

  13. In order that the function f(x) = (x+1)^(1/x) is continuous at x = 0, ...

    Text Solution

    |

  14. The function f (x ) = |x | at x = 0 is

    Text Solution

    |

  15. lim(x rarr 0) (cosec x )^(1//"log"x) is equal to

    Text Solution

    |

  16. The value of lim(xtooo)((x+6)/(x+1))^(x+4), is

    Text Solution

    |

  17. The set of points where the function f(x) = x |x| is differentiable i...

    Text Solution

    |

  18. lim(x->2)(sqrt(1+sqrt(2+x))-sqrt(3))/(x-2) is equal to

    Text Solution

    |

  19. lim(x rarr 1) (1-x) tan((pi x)/2)

    Text Solution

    |

  20. If f: R rarr R is defined by f(x) = [ x -3] + | x-4| for x in R then...

    Text Solution

    |

  21. If f : R rarr R is defined by f(x) = {{:((cos 3x-cosx )/(x^(2)), "f...

    Text Solution

    |