Home
Class 12
MATHS
lim( n rarr oo) sin [ pi sqrt(n^(2)+1)] ...

`lim_( n rarr oo) sin [ pi sqrt(n^(2)+1)]` is equal to

A

`oo`

B

0

C

Does not exist

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{n \to \infty} \sin \left( \pi \sqrt{n^2 + 1} \right) \), we can follow these steps: ### Step-by-Step Solution: 1. **Rewrite the Argument of the Sine Function**: We start with the limit: \[ \lim_{n \to \infty} \sin \left( \pi \sqrt{n^2 + 1} \right) \] We can manipulate the expression inside the sine function: \[ \sqrt{n^2 + 1} = \sqrt{n^2(1 + \frac{1}{n^2})} = n\sqrt{1 + \frac{1}{n^2}} \] Therefore, we can rewrite the limit as: \[ \lim_{n \to \infty} \sin \left( \pi n \sqrt{1 + \frac{1}{n^2}} \right) \] 2. **Simplify the Expression**: As \( n \to \infty \), \( \sqrt{1 + \frac{1}{n^2}} \) approaches 1. Thus: \[ \lim_{n \to \infty} \sin \left( \pi n \cdot 1 \right) = \lim_{n \to \infty} \sin(\pi n) \] The sine function has a periodicity of \( 2\pi \), and \( \sin(\pi n) = 0 \) for all integer values of \( n \). 3. **Evaluate the Limit**: Therefore, we conclude: \[ \lim_{n \to \infty} \sin(\pi n) = 0 \] Thus, the final result is: \[ \lim_{n \to \infty} \sin \left( \pi \sqrt{n^2 + 1} \right) = 0 \] ### Final Answer: The limit is \( 0 \).
Promotional Banner

Topper's Solved these Questions

  • LIMITS CONTINUITY AND DIFFERENTIABILITY

    BITSAT GUIDE|Exercise BITSAT Archives |28 Videos
  • INDEFINITE INTEGRAL

    BITSAT GUIDE|Exercise BITSAT Archives |14 Videos
  • LINEAR PROGRAMMING

    BITSAT GUIDE|Exercise BITSAT ARCHIVES|3 Videos

Similar Questions

Explore conceptually related problems

Find the value of lim_(n rarr oo)cos[pi sqrt(n^(2)+n)],n in Z is equal to

lim_(n rarr oo) sqrt(n)/sqrt(n+1)=

lim_ (n rarr oo) (1) / ((n) ^ ((1) / (n))) is equal to

lim_ (n rarr oo) (sin (n theta)) / (sqrt (n))

lim_(n rarr oo)(sqrt(n+1)-sqrt(n))=0

Evaluate the limit: (lim_(n rarr oo)cos(pi sqrt(n^(2)+n)) when n is an integer

lim_ (n rarr oo) [1-ln (1+ (1) / (n)) ^ (n-2)] is equal to

lim_ (n rarr oo) ((root (3) (n!)) / (n)) is equal to

lim_ (n rarr oo) [1+ (2) / (n)] ^ (2n) =

BITSAT GUIDE-LIMITS CONTINUITY AND DIFFERENTIABILITY -BITSAT Archives
  1. lim( n rarr oo) sin [ pi sqrt(n^(2)+1)] is equal to

    Text Solution

    |

  2. lim(x rarr 0) (1+x)^(8)-1 is equal

    Text Solution

    |

  3. lim(x rarr tan^(-1) 3) (tan^(2) x -2 tan x -3)/(tan^(2)x-4 tan x +3) ...

    Text Solution

    |

  4. lim ( xrarr -oo) (x^(4).sin((1)/(x))+x^(2))/(1+|x|^(3)) is equal to

    Text Solution

    |

  5. lim(x rarr 1) (x^(m)-1)/(x^(n)-1) is equal to

    Text Solution

    |

  6. If f(x) = = {{:([tan ((pi)/(4)+x)]^(1//x),x ne0),(k ,x=0):} For what...

    Text Solution

    |

  7. The value of lim(x rarr 0) ((1+5x^(2))/(1+3x^(2)))^(1/x^2) is

    Text Solution

    |

  8. lim(x rarr 0) ((2+x) sin (2+x) - 2 sin2)/(x) is equal to

    Text Solution

    |

  9. If f(x)=((3x+tan^(2) x)/x) is continuous at x=0, then f(0) is equal to...

    Text Solution

    |

  10. If f(x) = (log (1+ax)-log (1-bx))/(x) for x ne 0 and f(0) = k and f(x...

    Text Solution

    |

  11. lim(x rarr0) (sin x)/(x)

    Text Solution

    |

  12. lim(x->0)(cos(sinx)-1)/(x^2)

    Text Solution

    |

  13. In order that the function f(x) = (x+1)^(1/x) is continuous at x = 0, ...

    Text Solution

    |

  14. The function f (x ) = |x | at x = 0 is

    Text Solution

    |

  15. lim(x rarr 0) (cosec x )^(1//"log"x) is equal to

    Text Solution

    |

  16. The value of lim(xtooo)((x+6)/(x+1))^(x+4), is

    Text Solution

    |

  17. The set of points where the function f(x) = x |x| is differentiable i...

    Text Solution

    |

  18. lim(x->2)(sqrt(1+sqrt(2+x))-sqrt(3))/(x-2) is equal to

    Text Solution

    |

  19. lim(x rarr 1) (1-x) tan((pi x)/2)

    Text Solution

    |

  20. If f: R rarr R is defined by f(x) = [ x -3] + | x-4| for x in R then...

    Text Solution

    |

  21. If f : R rarr R is defined by f(x) = {{:((cos 3x-cosx )/(x^(2)), "f...

    Text Solution

    |