Home
Class 12
MATHS
The values of a,b and c, such that lim(x...

The values of a,b and c, such that `lim_(x rarr 0) (ae^(x)- bcos x + c e^(-x))/(x sin x ) ` = 2 are

A

a = 1,b = − 2, c = 1

B

a = 1,b = 2, c = − 1

C

a = 1,b = 2, c = 1

D

a = − 1,b = 2, c = 1

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit problem given by \[ \lim_{x \to 0} \frac{ae^x - b\cos x + c e^{-x}}{x \sin x} = 2, \] we will use Taylor series expansions for \(e^x\), \(\cos x\), and \(\sin x\) around \(x = 0\). ### Step 1: Expand the functions using Taylor series 1. **Expansion of \(e^x\)**: \[ e^x = 1 + x + \frac{x^2}{2} + O(x^3) \] 2. **Expansion of \(\cos x\)**: \[ \cos x = 1 - \frac{x^2}{2} + O(x^4) \] 3. **Expansion of \(e^{-x}\)**: \[ e^{-x} = 1 - x + \frac{x^2}{2} + O(x^3) \] 4. **Expansion of \(\sin x\)**: \[ \sin x = x - \frac{x^3}{6} + O(x^5) \] ### Step 2: Substitute the expansions into the limit expression Substituting the expansions into the limit expression gives: \[ ae^x - b\cos x + c e^{-x} = a\left(1 + x + \frac{x^2}{2}\right) - b\left(1 - \frac{x^2}{2}\right) + c\left(1 - x + \frac{x^2}{2}\right) \] Combining these, we have: \[ = (a - b + c) + (a - c)x + \left(a + b + c\right)\frac{x^2}{2} + O(x^3) \] ### Step 3: Expand the denominator The denominator \(x \sin x\) becomes: \[ x \sin x = x\left(x - \frac{x^3}{6} + O(x^5)\right) = x^2 - \frac{x^4}{6} + O(x^6) \] ### Step 4: Formulate the limit Now, substituting the numerator and denominator into the limit gives: \[ \lim_{x \to 0} \frac{(a - b + c) + (a - c)x + \left(a + b + c\right)\frac{x^2}{2}}{x^2 - \frac{x^4}{6} + O(x^6)} \] ### Step 5: Analyze the limit As \(x \to 0\), for the limit to exist and equal to 2, the constant term in the numerator must be zero: 1. **Setting the constant term to zero**: \[ a - b + c = 0 \quad \text{(1)} \] 2. **Setting the coefficient of \(x\) to zero**: \[ a - c = 0 \quad \text{(2)} \] 3. **Setting the coefficient of \(x^2\)**: \[ a + b + c = 4 \quad \text{(3)} \quad \text{(since the limit equals 2)} \] ### Step 6: Solve the equations From equation (2), we have: \[ a = c \] Substituting \(c\) with \(a\) in equation (1): \[ a - b + a = 0 \implies 2a - b = 0 \implies b = 2a \] Now substituting \(b\) and \(c\) into equation (3): \[ a + 2a + a = 4 \implies 4a = 4 \implies a = 1 \] Thus, we find: \[ c = a = 1, \quad b = 2a = 2 \] ### Final Values The values of \(a\), \(b\), and \(c\) are: \[ a = 1, \quad b = 2, \quad c = 1 \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS CONTINUITY AND DIFFERENTIABILITY

    BITSAT GUIDE|Exercise BITSAT Archives |28 Videos
  • INDEFINITE INTEGRAL

    BITSAT GUIDE|Exercise BITSAT Archives |14 Videos
  • LINEAR PROGRAMMING

    BITSAT GUIDE|Exercise BITSAT ARCHIVES|3 Videos

Similar Questions

Explore conceptually related problems

Find the values of a,b and c so that lim_(x rarr0)(ae^(x)-b cos x+ce^(-x))/(x*sin x)=2

lim_(x rarr0)(a^(x)-b^(x))/(sin x)

lim_ (x rarr0) (e ^ (x) -e ^ (- x)) / (x)

lim_(x rarr0)(e^(sin x)-1)/(x)

lim_(x rarr0)(e^(sin x)-1)/(x)

Evaluate: lim_(x rarr0)(e^(x)-e^(x cos x))/((x+sin x))

lim_ (x rarr0) (ae ^ (x) + 3e ^ (2x) -b) / (x) = 8

lim_(x rarr0)((e^(3+x)-sin x-e^(3)))/(x)

lim_(x rarr0)(a^(x)-b^(x))/(c^(x)-d^(x))

lim_(x rarr0)((a^(x)+b^(x)+c^(x)-3)/(sin x))=

BITSAT GUIDE-LIMITS CONTINUITY AND DIFFERENTIABILITY -BITSAT Archives
  1. The values of a,b and c, such that lim(x rarr 0) (ae^(x)- bcos x + c e...

    Text Solution

    |

  2. lim(x rarr 0) (1+x)^(8)-1 is equal

    Text Solution

    |

  3. lim(x rarr tan^(-1) 3) (tan^(2) x -2 tan x -3)/(tan^(2)x-4 tan x +3) ...

    Text Solution

    |

  4. lim ( xrarr -oo) (x^(4).sin((1)/(x))+x^(2))/(1+|x|^(3)) is equal to

    Text Solution

    |

  5. lim(x rarr 1) (x^(m)-1)/(x^(n)-1) is equal to

    Text Solution

    |

  6. If f(x) = = {{:([tan ((pi)/(4)+x)]^(1//x),x ne0),(k ,x=0):} For what...

    Text Solution

    |

  7. The value of lim(x rarr 0) ((1+5x^(2))/(1+3x^(2)))^(1/x^2) is

    Text Solution

    |

  8. lim(x rarr 0) ((2+x) sin (2+x) - 2 sin2)/(x) is equal to

    Text Solution

    |

  9. If f(x)=((3x+tan^(2) x)/x) is continuous at x=0, then f(0) is equal to...

    Text Solution

    |

  10. If f(x) = (log (1+ax)-log (1-bx))/(x) for x ne 0 and f(0) = k and f(x...

    Text Solution

    |

  11. lim(x rarr0) (sin x)/(x)

    Text Solution

    |

  12. lim(x->0)(cos(sinx)-1)/(x^2)

    Text Solution

    |

  13. In order that the function f(x) = (x+1)^(1/x) is continuous at x = 0, ...

    Text Solution

    |

  14. The function f (x ) = |x | at x = 0 is

    Text Solution

    |

  15. lim(x rarr 0) (cosec x )^(1//"log"x) is equal to

    Text Solution

    |

  16. The value of lim(xtooo)((x+6)/(x+1))^(x+4), is

    Text Solution

    |

  17. The set of points where the function f(x) = x |x| is differentiable i...

    Text Solution

    |

  18. lim(x->2)(sqrt(1+sqrt(2+x))-sqrt(3))/(x-2) is equal to

    Text Solution

    |

  19. lim(x rarr 1) (1-x) tan((pi x)/2)

    Text Solution

    |

  20. If f: R rarr R is defined by f(x) = [ x -3] + | x-4| for x in R then...

    Text Solution

    |

  21. If f : R rarr R is defined by f(x) = {{:((cos 3x-cosx )/(x^(2)), "f...

    Text Solution

    |