Home
Class 12
MATHS
If f(x) = (sqrt(2) cos x -1) /(cot x-1) ...

If f(x) = `(sqrt(2) cos x -1) /(cot x-1) , x ne (pi)/(4)` then the value of f `((pi)/(4))` so that f(x) becomes continous at x = `(pi)/(4)` is

A

`(1)/(2)`

B

`-(1)/(2)`

C

1

D

9

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( f\left(\frac{\pi}{4}\right) \) such that \( f(x) \) becomes continuous at \( x = \frac{\pi}{4} \), we need to evaluate the limit of \( f(x) \) as \( x \) approaches \( \frac{\pi}{4} \). Given: \[ f(x) = \frac{\sqrt{2} \cos x - 1}{\cot x - 1}, \quad x \neq \frac{\pi}{4} \] ### Step 1: Evaluate the limit as \( x \to \frac{\pi}{4} \) We need to find: \[ \lim_{x \to \frac{\pi}{4}} f(x) = \lim_{x \to \frac{\pi}{4}} \frac{\sqrt{2} \cos x - 1}{\cot x - 1} \] ### Step 2: Substitute \( x = \frac{\pi}{4} \) Substituting \( x = \frac{\pi}{4} \): - \( \cos\left(\frac{\pi}{4}\right) = \frac{1}{\sqrt{2}} \) - \( \cot\left(\frac{\pi}{4}\right) = 1 \) Thus, we have: \[ \sqrt{2} \cos\left(\frac{\pi}{4}\right) - 1 = \sqrt{2} \cdot \frac{1}{\sqrt{2}} - 1 = 1 - 1 = 0 \] \[ \cot\left(\frac{\pi}{4}\right) - 1 = 1 - 1 = 0 \] This results in the form \( \frac{0}{0} \), which is indeterminate. ### Step 3: Apply L'Hôpital's Rule Since we have an indeterminate form, we can apply L'Hôpital's Rule, which states that: \[ \lim_{x \to c} \frac{f(x)}{g(x)} = \lim_{x \to c} \frac{f'(x)}{g'(x)} \] if the limit on the right side exists. #### Differentiate the numerator and denominator: 1. **Numerator**: \( \sqrt{2} \cos x - 1 \) - Derivative: \( -\sqrt{2} \sin x \) 2. **Denominator**: \( \cot x - 1 \) - Derivative: \( -\csc^2 x \) Now we can rewrite the limit: \[ \lim_{x \to \frac{\pi}{4}} \frac{-\sqrt{2} \sin x}{-\csc^2 x} = \lim_{x \to \frac{\pi}{4}} \frac{\sqrt{2} \sin x \cdot \sin^2 x}{1} \] ### Step 4: Evaluate the limit Substituting \( x = \frac{\pi}{4} \): - \( \sin\left(\frac{\pi}{4}\right) = \frac{1}{\sqrt{2}} \) Thus: \[ \lim_{x \to \frac{\pi}{4}} \sqrt{2} \left(\frac{1}{\sqrt{2}}\right) \left(\frac{1}{\sqrt{2}}\right)^2 = \sqrt{2} \cdot \frac{1}{\sqrt{2}} \cdot \frac{1}{2} = \frac{1}{2} \] ### Conclusion The value of \( f\left(\frac{\pi}{4}\right) \) that makes \( f(x) \) continuous at \( x = \frac{\pi}{4} \) is: \[ f\left(\frac{\pi}{4}\right) = -\frac{1}{2} \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS CONTINUITY AND DIFFERENTIABILITY

    BITSAT GUIDE|Exercise BITSAT Archives |28 Videos
  • INDEFINITE INTEGRAL

    BITSAT GUIDE|Exercise BITSAT Archives |14 Videos
  • LINEAR PROGRAMMING

    BITSAT GUIDE|Exercise BITSAT ARCHIVES|3 Videos

Similar Questions

Explore conceptually related problems

If f(x)=(sqrt(2)cos x-1)/(cot x-1),x!=(pi)/(4). Find the value of f((pi)/(4)) so that f(x) becomes continuous at x=(pi)/(4)

If f(x)=(sqrt(2)cos x-1)/(cot x-1),x!=(pi)/(4). Find the value of f((pi)/(4)) so that f(x) becomes continuous at x=pi/4

if f(x)=(sqrt(2)cos x-1)/(cot x-1),x!=(pi)/(4) Find the value of f((pi)/(4)) so that f(x) becomes continuous at x=(pi)/(4)

Consider the function f(x)=(sin 2x)^(tan^(2)2x), x in (pi)/(4) . The value of f((pi)/(4)) such that f is continuous at x=(pi)/(4) is

If f(x)=tan (pi//4 -x)//cot2x for x ne pi//4 . The value of f(pi//4) so that f is continuous at x=pi//4 is

Let f(x)=(cos x -sinx)/(cos 2x)+ sin^2x , x ne pi/4 . The value of f(pi//4) so that f is continuous on (0,pi//2) is (sqrt2=1.41)

For f(x)=(k cos x)/(pi-2x), if x!=(pi)/(2),3, if x=(pi)/(2) then find the value of k so that f is continous at x=(pi)/(2)

The function f(x) = (1-sin x + cos x)/(1+sin x + cosx) is not defined at x = pi . The value of f(pi) , so that f(x) is continuous at x = pi is

BITSAT GUIDE-LIMITS CONTINUITY AND DIFFERENTIABILITY -BITSAT Archives
  1. If f(x) = (sqrt(2) cos x -1) /(cot x-1) , x ne (pi)/(4) then the value...

    Text Solution

    |

  2. lim(x rarr 0) (1+x)^(8)-1 is equal

    Text Solution

    |

  3. lim(x rarr tan^(-1) 3) (tan^(2) x -2 tan x -3)/(tan^(2)x-4 tan x +3) ...

    Text Solution

    |

  4. lim ( xrarr -oo) (x^(4).sin((1)/(x))+x^(2))/(1+|x|^(3)) is equal to

    Text Solution

    |

  5. lim(x rarr 1) (x^(m)-1)/(x^(n)-1) is equal to

    Text Solution

    |

  6. If f(x) = = {{:([tan ((pi)/(4)+x)]^(1//x),x ne0),(k ,x=0):} For what...

    Text Solution

    |

  7. The value of lim(x rarr 0) ((1+5x^(2))/(1+3x^(2)))^(1/x^2) is

    Text Solution

    |

  8. lim(x rarr 0) ((2+x) sin (2+x) - 2 sin2)/(x) is equal to

    Text Solution

    |

  9. If f(x)=((3x+tan^(2) x)/x) is continuous at x=0, then f(0) is equal to...

    Text Solution

    |

  10. If f(x) = (log (1+ax)-log (1-bx))/(x) for x ne 0 and f(0) = k and f(x...

    Text Solution

    |

  11. lim(x rarr0) (sin x)/(x)

    Text Solution

    |

  12. lim(x->0)(cos(sinx)-1)/(x^2)

    Text Solution

    |

  13. In order that the function f(x) = (x+1)^(1/x) is continuous at x = 0, ...

    Text Solution

    |

  14. The function f (x ) = |x | at x = 0 is

    Text Solution

    |

  15. lim(x rarr 0) (cosec x )^(1//"log"x) is equal to

    Text Solution

    |

  16. The value of lim(xtooo)((x+6)/(x+1))^(x+4), is

    Text Solution

    |

  17. The set of points where the function f(x) = x |x| is differentiable i...

    Text Solution

    |

  18. lim(x->2)(sqrt(1+sqrt(2+x))-sqrt(3))/(x-2) is equal to

    Text Solution

    |

  19. lim(x rarr 1) (1-x) tan((pi x)/2)

    Text Solution

    |

  20. If f: R rarr R is defined by f(x) = [ x -3] + | x-4| for x in R then...

    Text Solution

    |

  21. If f : R rarr R is defined by f(x) = {{:((cos 3x-cosx )/(x^(2)), "f...

    Text Solution

    |