Home
Class 12
MATHS
If lim(x rarr 0) ("log(a+x)- "loga")/(x)...

If `lim_(x rarr 0) ("log(a+x)- "loga")/(x) + k lim_( xrarr 0)(log x-1)/(x-e)=1` then

A

`k = e (1-(1)/(a) ) `

B

k = e (1+a)

C

k=e (2-a)

D

equality is not possible

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the limits given in the expression and find the value of \( k \). ### Step-by-Step Solution: 1. **Identify the limits**: We have two limits to evaluate: - \( L_1 = \lim_{x \to 0} \frac{\log(a+x) - \log a}{x} \) - \( L_2 = \lim_{x \to 0} \frac{\log x - 1}{x - e} \) 2. **Evaluate \( L_1 \)**: - Substitute \( x = 0 \): \[ L_1 = \frac{\log(a+0) - \log a}{0} = \frac{\log a - \log a}{0} = \frac{0}{0} \] This is an indeterminate form, so we apply L'Hôpital's Rule: - Differentiate the numerator and denominator: \[ L_1 = \lim_{x \to 0} \frac{\frac{d}{dx}[\log(a+x)]}{\frac{d}{dx}[x]} = \lim_{x \to 0} \frac{\frac{1}{a+x}}{1} = \frac{1}{a} \] 3. **Evaluate \( L_2 \)**: - Substitute \( x = 0 \): \[ L_2 = \frac{\log(0) - 1}{0 - e} = \frac{-\infty - 1}{-e} = \frac{-\infty}{-e} = \infty \] This limit diverges, so we need to evaluate it more carefully. We can rewrite it as: \[ L_2 = \lim_{x \to 0} \frac{\log x - \log e}{x - e} = \lim_{x \to 0} \frac{\log\left(\frac{x}{e}\right)}{x - e} \] - As \( x \to 0 \), \( \log\left(\frac{x}{e}\right) \to -\infty \) and \( x - e \to -e \): \[ L_2 = \lim_{x \to 0} \frac{-\infty}{-e} = \frac{1}{e} \] 4. **Substitute the limits into the original equation**: - We have: \[ L_1 + k L_2 = 1 \] Substituting the values we found: \[ \frac{1}{a} + k \cdot \frac{1}{e} = 1 \] 5. **Solve for \( k \)**: - Rearranging gives: \[ k \cdot \frac{1}{e} = 1 - \frac{1}{a} \] \[ k = e \left(1 - \frac{1}{a}\right) = e \left(\frac{a - 1}{a}\right) \] ### Final Answer: Thus, the value of \( k \) is: \[ k = e \left(\frac{a - 1}{a}\right) \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS CONTINUITY AND DIFFERENTIABILITY

    BITSAT GUIDE|Exercise BITSAT Archives |28 Videos
  • INDEFINITE INTEGRAL

    BITSAT GUIDE|Exercise BITSAT Archives |14 Videos
  • LINEAR PROGRAMMING

    BITSAT GUIDE|Exercise BITSAT ARCHIVES|3 Videos

Similar Questions

Explore conceptually related problems

lim_(x rarr0)x log(sin x)

lim_(x rarr0)(log(a+x)-log(a-x))/(x)

lim_(x rarr0)[(log(a+x)-log a)/(x)]=...

lim_(x rarr0)x log x .

lim_(x rarr0)(log(1+x))/(x)=1

lim_(x rarr0)((log(4-x)-log(4+x))/(x))

If lim_(x rarr0)(log(3+x)-log(3-x))/(x)=

"lim_(x rarr0)[(log(2+x)-log(2-x))/(x)]

lim_(x rarr0)[(log(1+7x)-log(1+3x))/(x)]

lim_(x rarr0)(log_(e)(1+x))/(x)

BITSAT GUIDE-LIMITS CONTINUITY AND DIFFERENTIABILITY -BITSAT Archives
  1. If lim(x rarr 0) ("log(a+x)- "loga")/(x) + k lim( xrarr 0)(log x-1)/(x...

    Text Solution

    |

  2. lim(x rarr 0) (1+x)^(8)-1 is equal

    Text Solution

    |

  3. lim(x rarr tan^(-1) 3) (tan^(2) x -2 tan x -3)/(tan^(2)x-4 tan x +3) ...

    Text Solution

    |

  4. lim ( xrarr -oo) (x^(4).sin((1)/(x))+x^(2))/(1+|x|^(3)) is equal to

    Text Solution

    |

  5. lim(x rarr 1) (x^(m)-1)/(x^(n)-1) is equal to

    Text Solution

    |

  6. If f(x) = = {{:([tan ((pi)/(4)+x)]^(1//x),x ne0),(k ,x=0):} For what...

    Text Solution

    |

  7. The value of lim(x rarr 0) ((1+5x^(2))/(1+3x^(2)))^(1/x^2) is

    Text Solution

    |

  8. lim(x rarr 0) ((2+x) sin (2+x) - 2 sin2)/(x) is equal to

    Text Solution

    |

  9. If f(x)=((3x+tan^(2) x)/x) is continuous at x=0, then f(0) is equal to...

    Text Solution

    |

  10. If f(x) = (log (1+ax)-log (1-bx))/(x) for x ne 0 and f(0) = k and f(x...

    Text Solution

    |

  11. lim(x rarr0) (sin x)/(x)

    Text Solution

    |

  12. lim(x->0)(cos(sinx)-1)/(x^2)

    Text Solution

    |

  13. In order that the function f(x) = (x+1)^(1/x) is continuous at x = 0, ...

    Text Solution

    |

  14. The function f (x ) = |x | at x = 0 is

    Text Solution

    |

  15. lim(x rarr 0) (cosec x )^(1//"log"x) is equal to

    Text Solution

    |

  16. The value of lim(xtooo)((x+6)/(x+1))^(x+4), is

    Text Solution

    |

  17. The set of points where the function f(x) = x |x| is differentiable i...

    Text Solution

    |

  18. lim(x->2)(sqrt(1+sqrt(2+x))-sqrt(3))/(x-2) is equal to

    Text Solution

    |

  19. lim(x rarr 1) (1-x) tan((pi x)/2)

    Text Solution

    |

  20. If f: R rarr R is defined by f(x) = [ x -3] + | x-4| for x in R then...

    Text Solution

    |

  21. If f : R rarr R is defined by f(x) = {{:((cos 3x-cosx )/(x^(2)), "f...

    Text Solution

    |