Home
Class 12
MATHS
If f(x) = = {{:([tan ((pi)/(4)+x)]^(1//x...

If f(x) = `= {{:([tan ((pi)/(4)+x)]^(1//x),x ne0),(k ,x=0):}`
For what value of k f(x) is continuous at x=0 ?

A

1

B

0

C

e

D

`e^(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To determine the value of \( k \) for which the function \( f(x) \) is continuous at \( x = 0 \), we need to ensure that: \[ \lim_{x \to 0} f(x) = f(0) \] Given the function: \[ f(x) = \begin{cases} \tan\left(\frac{\pi}{4} + x\right)^{\frac{1}{x}} & \text{if } x \neq 0 \\ k & \text{if } x = 0 \end{cases} \] ### Step 1: Calculate \( f(0) \) From the definition of the function, we have: \[ f(0) = k \] ### Step 2: Calculate \( \lim_{x \to 0} f(x) \) We need to find the limit of \( f(x) \) as \( x \) approaches 0. Thus, we evaluate: \[ \lim_{x \to 0} \tan\left(\frac{\pi}{4} + x\right)^{\frac{1}{x}} \] ### Step 3: Simplify \( \tan\left(\frac{\pi}{4} + x\right) \) Using the angle addition formula for tangent: \[ \tan\left(\frac{\pi}{4} + x\right) = \frac{\tan\left(\frac{\pi}{4}\right) + \tan(x)}{1 - \tan\left(\frac{\pi}{4}\right)\tan(x)} = \frac{1 + \tan(x)}{1 - \tan(x)} \] As \( x \to 0 \), \( \tan(x) \to x \). Thus: \[ \tan\left(\frac{\pi}{4} + x\right) \to \frac{1 + x}{1 - x} \] ### Step 4: Calculate the limit Now we need to find: \[ \lim_{x \to 0} \left(\frac{1 + x}{1 - x}\right)^{\frac{1}{x}} \] Using the fact that \( \ln(a^b) = b \ln(a) \): \[ \ln\left(\left(\frac{1 + x}{1 - x}\right)^{\frac{1}{x}}\right) = \frac{1}{x} \ln\left(\frac{1 + x}{1 - x}\right) \] ### Step 5: Expand using Taylor series Using the Taylor series expansion for \( \ln(1 + u) \): \[ \ln(1 + x) \approx x \quad \text{and} \quad \ln(1 - x) \approx -x \] Thus: \[ \ln\left(\frac{1 + x}{1 - x}\right) \approx \ln(1 + x) - \ln(1 - x) \approx x - (-x) = 2x \] ### Step 6: Substitute back into the limit Now substituting back: \[ \frac{1}{x} \ln\left(\frac{1 + x}{1 - x}\right) \approx \frac{1}{x}(2x) = 2 \] Thus: \[ \lim_{x \to 0} \left(\frac{1 + x}{1 - x}\right)^{\frac{1}{x}} = e^2 \] ### Step 7: Set the limit equal to \( k \) For continuity at \( x = 0 \): \[ \lim_{x \to 0} f(x) = f(0) \implies e^2 = k \] ### Final Answer Thus, the value of \( k \) for which \( f(x) \) is continuous at \( x = 0 \) is: \[ \boxed{e^2} \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS CONTINUITY AND DIFFERENTIABILITY

    BITSAT GUIDE|Exercise BITSAT Archives |28 Videos
  • INDEFINITE INTEGRAL

    BITSAT GUIDE|Exercise BITSAT Archives |14 Videos
  • LINEAR PROGRAMMING

    BITSAT GUIDE|Exercise BITSAT ARCHIVES|3 Videos

Similar Questions

Explore conceptually related problems

f(x) = {{:(("tan"((pi)/(4)+x))^(1//x)",",x ne 0),(k",",x = 0):} for what value of k, f(x) is continuous at x = 0 ?

let f(x)=[tan((pi)/(4)+x)]^((1)/(x)),x!=0 and f(x)=k,x=0 then the value of k such that f(x) hold continuity at x=0

Let {:{((3|x|+4tanx)/x, x ne 0),(k , x =0):} Then f(x) is continuous at x = 0 for ,

Let f(x) = {:{ (x sin""(1/x) , x ne 0) , ( k , x = 0):} then f(x) is continuous at x = 0 if

If f(x)={{:(,x([(1)/(x)]+[(2)/(x)]+.....+[(n)/(x)]),x ne 0),(,k,x=0):} and n in N . Then the value of k for which f(x) is continuous at x=0 is

Let f(x)=({:((3|x|+4tanx)/(x),",",x ne0),(k,",",x=0):} then f(x) is continuous at x = 0 for :

Find the value of k, if the function f given by : {:(f(x)=[tan((pi)/(4)+x)^(1/x)]",", "for"x ne0),(=k",", "for" x=0):} is continous at x=0.

If f(x)=[tan((pi)/(4)+x)]^((1)/(x)),xne0" " f(x)=k , "x=0 , " is continuous at x=0 " Then k= . . . .

BITSAT GUIDE-LIMITS CONTINUITY AND DIFFERENTIABILITY -BITSAT Archives
  1. lim ( xrarr -oo) (x^(4).sin((1)/(x))+x^(2))/(1+|x|^(3)) is equal to

    Text Solution

    |

  2. lim(x rarr 1) (x^(m)-1)/(x^(n)-1) is equal to

    Text Solution

    |

  3. If f(x) = = {{:([tan ((pi)/(4)+x)]^(1//x),x ne0),(k ,x=0):} For what...

    Text Solution

    |

  4. The value of lim(x rarr 0) ((1+5x^(2))/(1+3x^(2)))^(1/x^2) is

    Text Solution

    |

  5. lim(x rarr 0) ((2+x) sin (2+x) - 2 sin2)/(x) is equal to

    Text Solution

    |

  6. If f(x)=((3x+tan^(2) x)/x) is continuous at x=0, then f(0) is equal to...

    Text Solution

    |

  7. If f(x) = (log (1+ax)-log (1-bx))/(x) for x ne 0 and f(0) = k and f(x...

    Text Solution

    |

  8. lim(x rarr0) (sin x)/(x)

    Text Solution

    |

  9. lim(x->0)(cos(sinx)-1)/(x^2)

    Text Solution

    |

  10. In order that the function f(x) = (x+1)^(1/x) is continuous at x = 0, ...

    Text Solution

    |

  11. The function f (x ) = |x | at x = 0 is

    Text Solution

    |

  12. lim(x rarr 0) (cosec x )^(1//"log"x) is equal to

    Text Solution

    |

  13. The value of lim(xtooo)((x+6)/(x+1))^(x+4), is

    Text Solution

    |

  14. The set of points where the function f(x) = x |x| is differentiable i...

    Text Solution

    |

  15. lim(x->2)(sqrt(1+sqrt(2+x))-sqrt(3))/(x-2) is equal to

    Text Solution

    |

  16. lim(x rarr 1) (1-x) tan((pi x)/2)

    Text Solution

    |

  17. If f: R rarr R is defined by f(x) = [ x -3] + | x-4| for x in R then...

    Text Solution

    |

  18. If f : R rarr R is defined by f(x) = {{:((cos 3x-cosx )/(x^(2)), "f...

    Text Solution

    |

  19. If f (2) = 4 and f^,(2) =1 then lim(x rarr 2) (x f(2)-2 f(x))/(x -2) ...

    Text Solution

    |

  20. If lim( x rarr oo) [ (x^(3)+1)/(x^(2)+1)- (ax +b)] =2 then

    Text Solution

    |