Home
Class 12
MATHS
The value of lim(x rarr 0) ((1+5x^(2))/(...

The value of `lim_(x rarr 0) ((1+5x^(2))/(1+3x^(2)))^(1/x^2)` is

A

`e^(2)`

B

e

C

1/e

D

`1//e^(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{x \to 0} \left( \frac{1 + 5x^2}{1 + 3x^2} \right)^{\frac{1}{x^2}} \), we can follow these steps: ### Step 1: Rewrite the limit We start by rewriting the limit in a more manageable form: \[ L = \lim_{x \to 0} \left( \frac{1 + 5x^2}{1 + 3x^2} \right)^{\frac{1}{x^2}} \] ### Step 2: Take the natural logarithm To simplify the expression, we take the natural logarithm: \[ \ln L = \lim_{x \to 0} \frac{1}{x^2} \ln \left( \frac{1 + 5x^2}{1 + 3x^2} \right) \] ### Step 3: Simplify the logarithm We can simplify the logarithm: \[ \ln \left( \frac{1 + 5x^2}{1 + 3x^2} \right) = \ln(1 + 5x^2) - \ln(1 + 3x^2) \] Using the Taylor expansion \( \ln(1 + u) \approx u \) when \( u \) is small, we have: \[ \ln(1 + 5x^2) \approx 5x^2 \quad \text{and} \quad \ln(1 + 3x^2) \approx 3x^2 \] Thus, \[ \ln \left( \frac{1 + 5x^2}{1 + 3x^2} \right) \approx 5x^2 - 3x^2 = 2x^2 \] ### Step 4: Substitute back into the limit Now substituting back into the limit: \[ \ln L = \lim_{x \to 0} \frac{1}{x^2} (2x^2) = \lim_{x \to 0} 2 = 2 \] ### Step 5: Exponentiate to find L Now, exponentiate both sides to solve for \( L \): \[ L = e^{\ln L} = e^2 \] ### Final Answer Thus, the value of the limit is: \[ \lim_{x \to 0} \left( \frac{1 + 5x^2}{1 + 3x^2} \right)^{\frac{1}{x^2}} = e^2 \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS CONTINUITY AND DIFFERENTIABILITY

    BITSAT GUIDE|Exercise BITSAT Archives |28 Videos
  • INDEFINITE INTEGRAL

    BITSAT GUIDE|Exercise BITSAT Archives |14 Videos
  • LINEAR PROGRAMMING

    BITSAT GUIDE|Exercise BITSAT ARCHIVES|3 Videos

Similar Questions

Explore conceptually related problems

lim_(x rarr0)((1+5x^(2))/(1+3x^(2)))^(1/x^(2))=

lim_(x rarr0)((5x^(2)+1)/(3x^(2)+1))^(1/x^(2))

lim_(x rarr0)((1+5x)/(1+3x^(2)))^((1)/(x^(2)))

lim_(x rarr0)(x^(2))/(1-cos x)

lim_(x rarr0)((1+x)^(5)-1)/(3x+5x^(2))

the value of lim_(x rarr0)(1+2x)^((1)/(x))

The value of lim_(x rarr0)((e^(1/x^(2))-1)/(e^(1/x^(2)+1))) is :

The value of lim_(x rarr0)((sin(x^(2)))^((1)/(x^(2)))+((1)/(x^(2)))^(x^(2))) is equal to

The value of lim_(x rarr0)(1+(1)/(x))^(x) is-

BITSAT GUIDE-LIMITS CONTINUITY AND DIFFERENTIABILITY -BITSAT Archives
  1. lim(x rarr 1) (x^(m)-1)/(x^(n)-1) is equal to

    Text Solution

    |

  2. If f(x) = = {{:([tan ((pi)/(4)+x)]^(1//x),x ne0),(k ,x=0):} For what...

    Text Solution

    |

  3. The value of lim(x rarr 0) ((1+5x^(2))/(1+3x^(2)))^(1/x^2) is

    Text Solution

    |

  4. lim(x rarr 0) ((2+x) sin (2+x) - 2 sin2)/(x) is equal to

    Text Solution

    |

  5. If f(x)=((3x+tan^(2) x)/x) is continuous at x=0, then f(0) is equal to...

    Text Solution

    |

  6. If f(x) = (log (1+ax)-log (1-bx))/(x) for x ne 0 and f(0) = k and f(x...

    Text Solution

    |

  7. lim(x rarr0) (sin x)/(x)

    Text Solution

    |

  8. lim(x->0)(cos(sinx)-1)/(x^2)

    Text Solution

    |

  9. In order that the function f(x) = (x+1)^(1/x) is continuous at x = 0, ...

    Text Solution

    |

  10. The function f (x ) = |x | at x = 0 is

    Text Solution

    |

  11. lim(x rarr 0) (cosec x )^(1//"log"x) is equal to

    Text Solution

    |

  12. The value of lim(xtooo)((x+6)/(x+1))^(x+4), is

    Text Solution

    |

  13. The set of points where the function f(x) = x |x| is differentiable i...

    Text Solution

    |

  14. lim(x->2)(sqrt(1+sqrt(2+x))-sqrt(3))/(x-2) is equal to

    Text Solution

    |

  15. lim(x rarr 1) (1-x) tan((pi x)/2)

    Text Solution

    |

  16. If f: R rarr R is defined by f(x) = [ x -3] + | x-4| for x in R then...

    Text Solution

    |

  17. If f : R rarr R is defined by f(x) = {{:((cos 3x-cosx )/(x^(2)), "f...

    Text Solution

    |

  18. If f (2) = 4 and f^,(2) =1 then lim(x rarr 2) (x f(2)-2 f(x))/(x -2) ...

    Text Solution

    |

  19. If lim( x rarr oo) [ (x^(3)+1)/(x^(2)+1)- (ax +b)] =2 then

    Text Solution

    |

  20. If f(x) = {{:((1-cosx )/(x) , x ne 0),( x , x=0):} is continuous at x...

    Text Solution

    |