Home
Class 12
MATHS
lim(x rarr 0) ((2+x) sin (2+x) - 2 sin2)...

`lim_(x rarr 0) ((2+x) sin (2+x) - 2 sin2)/(x) ` is equal to

A

sin 2

B

cos 2

C

1

D

1 cos 2 + sin 2

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit problem \( \lim_{x \to 0} \frac{(2+x) \sin(2+x) - 2 \sin(2)}{x} \), we will follow these steps: ### Step 1: Identify the form of the limit First, we substitute \( x = 0 \) into the expression to see if we can directly evaluate the limit: \[ (2+0) \sin(2+0) - 2 \sin(2) = 2 \sin(2) - 2 \sin(2) = 0 \] The denominator also becomes \( 0 \) when \( x = 0 \). Thus, we have a \( \frac{0}{0} \) indeterminate form. **Hint:** Check the form of the limit by substituting the value of \( x \) directly. ### Step 2: Apply L'Hôpital's Rule Since we have a \( \frac{0}{0} \) form, we can apply L'Hôpital's Rule, which states that: \[ \lim_{x \to c} \frac{f(x)}{g(x)} = \lim_{x \to c} \frac{f'(x)}{g'(x)} \] if the limit on the right side exists. Here, let: - \( f(x) = (2+x) \sin(2+x) - 2 \sin(2) \) - \( g(x) = x \) Now we need to differentiate \( f(x) \) and \( g(x) \). **Hint:** Remember to differentiate both the numerator and the denominator. ### Step 3: Differentiate the numerator Using the product rule and chain rule to differentiate \( f(x) \): \[ f'(x) = \frac{d}{dx}[(2+x) \sin(2+x)] = \sin(2+x) + (2+x) \cos(2+x) \] Now, we differentiate \( g(x) \): \[ g'(x) = 1 \] **Hint:** Use product and chain rules for differentiation. ### Step 4: Substitute into L'Hôpital's Rule Now we substitute back into L'Hôpital's Rule: \[ \lim_{x \to 0} \frac{f'(x)}{g'(x)} = \lim_{x \to 0} \left[\sin(2+x) + (2+x) \cos(2+x)\right] \] **Hint:** Evaluate the limit by substituting \( x = 0 \) again. ### Step 5: Evaluate the limit Now substituting \( x = 0 \): \[ \sin(2+0) + (2+0) \cos(2+0) = \sin(2) + 2 \cos(2) \] Thus, the limit is: \[ \lim_{x \to 0} \frac{(2+x) \sin(2+x) - 2 \sin(2)}{x} = \sin(2) + 2 \cos(2) \] ### Final Answer The limit is: \[ \sin(2) + 2 \cos(2) \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS CONTINUITY AND DIFFERENTIABILITY

    BITSAT GUIDE|Exercise BITSAT Archives |28 Videos
  • INDEFINITE INTEGRAL

    BITSAT GUIDE|Exercise BITSAT Archives |14 Videos
  • LINEAR PROGRAMMING

    BITSAT GUIDE|Exercise BITSAT ARCHIVES|3 Videos

Similar Questions

Explore conceptually related problems

lim_(x rarr0)((2+x)sin(2+x)-2sin2)/(x)=

lim_(x rarr0)(tan x)/(sin^(2)x)

lim_(x rarr0)(x)/(sin2x)

lim_(x rarr0)(x)/(sin2x)

lim_(x rarr0)(sin(a+x)+sin(a-x)-2sin a)/(x)

lim_(x rarr0)(x^(2)sin^(2)x)/(x^(2)-sin^(2)x)

. lim_(x rarr0)(x^(2))/(sin x^(2))

lim_(x rarr0)x^(2)sin(pi/x)=

lim_(x rarr0)(sin x)/(x^(2))

lim_(x rarr0)((a+x)^(2)sin(a+x)-a^(2)sin a)/(x)

BITSAT GUIDE-LIMITS CONTINUITY AND DIFFERENTIABILITY -BITSAT Archives
  1. If f(x) = = {{:([tan ((pi)/(4)+x)]^(1//x),x ne0),(k ,x=0):} For what...

    Text Solution

    |

  2. The value of lim(x rarr 0) ((1+5x^(2))/(1+3x^(2)))^(1/x^2) is

    Text Solution

    |

  3. lim(x rarr 0) ((2+x) sin (2+x) - 2 sin2)/(x) is equal to

    Text Solution

    |

  4. If f(x)=((3x+tan^(2) x)/x) is continuous at x=0, then f(0) is equal to...

    Text Solution

    |

  5. If f(x) = (log (1+ax)-log (1-bx))/(x) for x ne 0 and f(0) = k and f(x...

    Text Solution

    |

  6. lim(x rarr0) (sin x)/(x)

    Text Solution

    |

  7. lim(x->0)(cos(sinx)-1)/(x^2)

    Text Solution

    |

  8. In order that the function f(x) = (x+1)^(1/x) is continuous at x = 0, ...

    Text Solution

    |

  9. The function f (x ) = |x | at x = 0 is

    Text Solution

    |

  10. lim(x rarr 0) (cosec x )^(1//"log"x) is equal to

    Text Solution

    |

  11. The value of lim(xtooo)((x+6)/(x+1))^(x+4), is

    Text Solution

    |

  12. The set of points where the function f(x) = x |x| is differentiable i...

    Text Solution

    |

  13. lim(x->2)(sqrt(1+sqrt(2+x))-sqrt(3))/(x-2) is equal to

    Text Solution

    |

  14. lim(x rarr 1) (1-x) tan((pi x)/2)

    Text Solution

    |

  15. If f: R rarr R is defined by f(x) = [ x -3] + | x-4| for x in R then...

    Text Solution

    |

  16. If f : R rarr R is defined by f(x) = {{:((cos 3x-cosx )/(x^(2)), "f...

    Text Solution

    |

  17. If f (2) = 4 and f^,(2) =1 then lim(x rarr 2) (x f(2)-2 f(x))/(x -2) ...

    Text Solution

    |

  18. If lim( x rarr oo) [ (x^(3)+1)/(x^(2)+1)- (ax +b)] =2 then

    Text Solution

    |

  19. If f(x) = {{:((1-cosx )/(x) , x ne 0),( x , x=0):} is continuous at x...

    Text Solution

    |

  20. lim( x rarr0) (tanx - sinx )/(x^(3)) is equal to

    Text Solution

    |