Home
Class 12
MATHS
lim(x rarr 0) (cosec x )^(1//"log"x) is ...

`lim_(x rarr 0) (cosec x )^(1//"log"x)` is equal to

A

0

B

1

C

1/e

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{x \to 0} (\csc x)^{\frac{1}{\log x}} \), we can follow these steps: ### Step 1: Rewrite the limit Let \( y = \lim_{x \to 0} (\csc x)^{\frac{1}{\log x}} \). ### Step 2: Take the natural logarithm Taking the natural logarithm of both sides, we have: \[ \log y = \lim_{x \to 0} \frac{\log(\csc x)}{\log x} \] ### Step 3: Simplify the logarithm Using the identity \( \csc x = \frac{1}{\sin x} \), we can rewrite: \[ \log(\csc x) = \log\left(\frac{1}{\sin x}\right) = -\log(\sin x) \] Thus, we have: \[ \log y = \lim_{x \to 0} \frac{-\log(\sin x)}{\log x} \] ### Step 4: Evaluate the limit As \( x \to 0 \), both \( \log(\sin x) \) and \( \log x \) approach \(-\infty\), resulting in an indeterminate form \(\frac{\infty}{\infty}\). We can apply L'Hôpital's rule: \[ \log y = \lim_{x \to 0} \frac{-\log(\sin x)}{\log x} \] ### Step 5: Apply L'Hôpital's Rule Differentiating the numerator and denominator: - The derivative of \(-\log(\sin x)\) is \(-\frac{\cos x}{\sin x} = -\cot x\). - The derivative of \(\log x\) is \(\frac{1}{x}\). Thus, we have: \[ \log y = \lim_{x \to 0} \frac{-\cot x}{\frac{1}{x}} = \lim_{x \to 0} -x \cot x \] ### Step 6: Simplify the limit We know that \(\cot x = \frac{\cos x}{\sin x}\), so: \[ -x \cot x = -x \cdot \frac{\cos x}{\sin x} = -\frac{x \cos x}{\sin x} \] As \( x \to 0 \), \(\frac{x}{\sin x} \to 1\) and \(\cos x \to 1\). Therefore: \[ \lim_{x \to 0} -\frac{x \cos x}{\sin x} = -1 \] ### Step 7: Conclude the limit Thus, we have: \[ \log y = -1 \implies y = e^{-1} = \frac{1}{e} \] ### Final Answer \[ \lim_{x \to 0} (\csc x)^{\frac{1}{\log x}} = \frac{1}{e} \] ---
Promotional Banner

Topper's Solved these Questions

  • LIMITS CONTINUITY AND DIFFERENTIABILITY

    BITSAT GUIDE|Exercise BITSAT Archives |28 Videos
  • INDEFINITE INTEGRAL

    BITSAT GUIDE|Exercise BITSAT Archives |14 Videos
  • LINEAR PROGRAMMING

    BITSAT GUIDE|Exercise BITSAT ARCHIVES|3 Videos

Similar Questions

Explore conceptually related problems

lim_(x rarr0)(csc x-cot x)

lim_(x rarr0)(cot x)^((1)/(log x))

lim_(x rarr0)x log(sin x)

lim_(x rarr0^(+))(cos ecx)^((1)/(log x))

The value of lim_(x rarr0)(log cos x)/(x) is equal to

lim_(x rarr0)x log x .

lim_(x rarr 0)(1-cos x)/(x log(1+x))

lim_(x rarr0)(1-cos x)/(log(1+x))

lim_(x rarr0)(cot)^((1)/(log x))

BITSAT GUIDE-LIMITS CONTINUITY AND DIFFERENTIABILITY -BITSAT Archives
  1. If f(x) = (log (1+ax)-log (1-bx))/(x) for x ne 0 and f(0) = k and f(x...

    Text Solution

    |

  2. lim(x rarr0) (sin x)/(x)

    Text Solution

    |

  3. lim(x->0)(cos(sinx)-1)/(x^2)

    Text Solution

    |

  4. In order that the function f(x) = (x+1)^(1/x) is continuous at x = 0, ...

    Text Solution

    |

  5. The function f (x ) = |x | at x = 0 is

    Text Solution

    |

  6. lim(x rarr 0) (cosec x )^(1//"log"x) is equal to

    Text Solution

    |

  7. The value of lim(xtooo)((x+6)/(x+1))^(x+4), is

    Text Solution

    |

  8. The set of points where the function f(x) = x |x| is differentiable i...

    Text Solution

    |

  9. lim(x->2)(sqrt(1+sqrt(2+x))-sqrt(3))/(x-2) is equal to

    Text Solution

    |

  10. lim(x rarr 1) (1-x) tan((pi x)/2)

    Text Solution

    |

  11. If f: R rarr R is defined by f(x) = [ x -3] + | x-4| for x in R then...

    Text Solution

    |

  12. If f : R rarr R is defined by f(x) = {{:((cos 3x-cosx )/(x^(2)), "f...

    Text Solution

    |

  13. If f (2) = 4 and f^,(2) =1 then lim(x rarr 2) (x f(2)-2 f(x))/(x -2) ...

    Text Solution

    |

  14. If lim( x rarr oo) [ (x^(3)+1)/(x^(2)+1)- (ax +b)] =2 then

    Text Solution

    |

  15. If f(x) = {{:((1-cosx )/(x) , x ne 0),( x , x=0):} is continuous at x...

    Text Solution

    |

  16. lim( x rarr0) (tanx - sinx )/(x^(3)) is equal to

    Text Solution

    |

  17. If f(x) = {{:((sin 5x)/(x^(2)+2x), x ne0), (k +(1)/(2) , x =0):} is co...

    Text Solution

    |

  18. The value of the constant alpha and beta such that lim(x rarr oo) ((x...

    Text Solution

    |

  19. lim(theta rarr oo) ( 4 theta (tan theta - 2 theta tan theta ))/((1 - c...

    Text Solution

    |

  20. Let f(x)={(1, AA, xlt0),(1+sinx, AA, 0lexlepi//2):} then what is the v...

    Text Solution

    |