Home
Class 12
MATHS
If a = hati+2hatj-3hatk and b = 3hati-ha...

If `a = hati+2hatj-3hatk and b = 3hati-hatj+2hatk` then the angle between the vectors a + b and a - b is

A

`60^@`

B

`90^@`

C

`45^@`

D

`55^@`

Text Solution

AI Generated Solution

The correct Answer is:
To find the angle between the vectors \( \mathbf{a} + \mathbf{b} \) and \( \mathbf{a} - \mathbf{b} \), we will follow these steps: ### Step 1: Define the vectors Given: \[ \mathbf{a} = \hat{i} + 2\hat{j} - 3\hat{k} \] \[ \mathbf{b} = 3\hat{i} - \hat{j} + 2\hat{k} \] ### Step 2: Calculate \( \mathbf{a} + \mathbf{b} \) To find \( \mathbf{a} + \mathbf{b} \): \[ \mathbf{a} + \mathbf{b} = (\hat{i} + 2\hat{j} - 3\hat{k}) + (3\hat{i} - \hat{j} + 2\hat{k}) \] Combine like terms: \[ = (1 + 3)\hat{i} + (2 - 1)\hat{j} + (-3 + 2)\hat{k} \] \[ = 4\hat{i} + 1\hat{j} - 1\hat{k} \] Thus, \[ \mathbf{a} + \mathbf{b} = 4\hat{i} + \hat{j} - \hat{k} \] ### Step 3: Calculate \( \mathbf{a} - \mathbf{b} \) To find \( \mathbf{a} - \mathbf{b} \): \[ \mathbf{a} - \mathbf{b} = (\hat{i} + 2\hat{j} - 3\hat{k}) - (3\hat{i} - \hat{j} + 2\hat{k}) \] Combine like terms: \[ = (1 - 3)\hat{i} + (2 + 1)\hat{j} + (-3 - 2)\hat{k} \] \[ = -2\hat{i} + 3\hat{j} - 5\hat{k} \] Thus, \[ \mathbf{a} - \mathbf{b} = -2\hat{i} + 3\hat{j} - 5\hat{k} \] ### Step 4: Calculate the dot product \( (\mathbf{a} + \mathbf{b}) \cdot (\mathbf{a} - \mathbf{b}) \) Now, we need to calculate the dot product: \[ (\mathbf{a} + \mathbf{b}) \cdot (\mathbf{a} - \mathbf{b}) = (4\hat{i} + \hat{j} - \hat{k}) \cdot (-2\hat{i} + 3\hat{j} - 5\hat{k}) \] Calculating the dot product: \[ = 4 \cdot (-2) + 1 \cdot 3 + (-1) \cdot (-5) \] \[ = -8 + 3 + 5 \] \[ = 0 \] ### Step 5: Calculate the magnitudes Next, we calculate the magnitudes of \( \mathbf{a} + \mathbf{b} \) and \( \mathbf{a} - \mathbf{b} \): \[ |\mathbf{a} + \mathbf{b}| = \sqrt{(4)^2 + (1)^2 + (-1)^2} = \sqrt{16 + 1 + 1} = \sqrt{18} \] \[ |\mathbf{a} - \mathbf{b}| = \sqrt{(-2)^2 + (3)^2 + (-5)^2} = \sqrt{4 + 9 + 25} = \sqrt{38} \] ### Step 6: Use the dot product to find the cosine of the angle Using the formula for the cosine of the angle \( \theta \): \[ \cos \theta = \frac{(\mathbf{a} + \mathbf{b}) \cdot (\mathbf{a} - \mathbf{b})}{|\mathbf{a} + \mathbf{b}| \cdot |\mathbf{a} - \mathbf{b}|} \] Substituting the values: \[ \cos \theta = \frac{0}{\sqrt{18} \cdot \sqrt{38}} = 0 \] ### Step 7: Find the angle \( \theta \) Since \( \cos \theta = 0 \), we have: \[ \theta = 90^\circ \] ### Final Answer The angle between the vectors \( \mathbf{a} + \mathbf{b} \) and \( \mathbf{a} - \mathbf{b} \) is \( 90^\circ \). ---
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    BITSAT GUIDE|Exercise BITSAT Archives|21 Videos
  • TRIGONOMETRY

    BITSAT GUIDE|Exercise BITSAT Archives|41 Videos

Similar Questions

Explore conceptually related problems

If a=hati+2hatj-3hatk and b=3hati+2hatk then the angle between the vectors a+b and a-b is

If a=2hati+2hatj-8hatk and b=hati+3hatj-4hatk , then the magnitude of a+b is equal to

If vecA= hati+2hatj+3hatk, vecB=-hati+hatj + 4hatk and vecC= 3hati-3hatj-12hatk , then find the angle between the vector (vecA+vecB+vecC) and (vecAxx vecB) in degrees.

If a=hati+2hatj+2hatk and b=3hati+6hatj+2hatk , then find a vector in the direction of a and having magnitude as |b|.

Three vectors a=hati+hatj-hatk, b=-hati+2hatj+hatk and c=-hati+2hatj-hatk , then the unit vector perpendicular to both a+b and b+c is

The two vectors A=2hati+hatj+3hatk and B=7hati-5hatj-3hatk are -

BITSAT GUIDE-VECTOR ALGEBRA -BITSAT Archives
  1. Let veca,vecb and vecc be non-zero vectors such that no two are collin...

    Text Solution

    |

  2. If |a|= 2, |b|=5 and |a xx b|=8, then |a.b| is equal to

    Text Solution

    |

  3. The work done by the force 4hati-3hatj +2hatk in moving a particle al...

    Text Solution

    |

  4. If a .(b xx c) = 0, then the correct statement is

    Text Solution

    |

  5. If 2hati+hatj-hatk & hati-4hat j+lambda hatk are perpendicular to each...

    Text Solution

    |

  6. If a.hati=4 then (axx hatj).(2hatj-3hatk) is equal to

    Text Solution

    |

  7. The vector r is equal to

    Text Solution

    |

  8. IF r.a = 0, r. b = 0 and r. c= 0 for some non-zero vector r. Then, the...

    Text Solution

    |

  9. let a, b, c be three vectors such that a. (b + c) = b. (c + a) = c. (a...

    Text Solution

    |

  10. The position vectors of P and Q are respectively vec a and vec b . If ...

    Text Solution

    |

  11. If the position vectors of A, B and C are respectively 2hati-hatj+hatk...

    Text Solution

    |

  12. Let vecV = 2hati +hatj - hatk and vecW= hati + 3hatk . if vecU is a u...

    Text Solution

    |

  13. the vector which is orthogonal to the vector 3hati+2hatj+6hatk and is ...

    Text Solution

    |

  14. Let a, b, c be three non-coplanar vectors and p, q, r be vectors defin...

    Text Solution

    |

  15. If hata, hatb and hatc are mutually perpendicular unit vectors then |...

    Text Solution

    |

  16. The projection of the vector 2hati+hatj -3hatk on the vector hati-2hat...

    Text Solution

    |

  17. If a = hati+2hatj-3hatk and b = 3hati-hatj+2hatk then the angle betwee...

    Text Solution

    |

  18. If the vectors alpha hati+hatj+hatk,hati+betahatj+hatk and hati+hatj+g...

    Text Solution

    |

  19. If a vector alpha lie in the plane of beta and gamma , then which is...

    Text Solution

    |

  20. If vec(alpha)=2hati+3hatj-hatk, vec(beta)=-hati+2hatj-4hatk, vecgamma=...

    Text Solution

    |