Home
Class 12
MATHS
If the vectors alpha hati+hatj+hatk,hati...

If the vectors `alpha hati+hatj+hatk,hati+betahatj+hatk and hati+hatj+gammahatk (alpha, beta, gamma ne 1)` are coplanar, then the value of `(1)/(1-alpha)+1/(1-beta)+1/(1-gamma)` is

A

`-1`

B

0

C

1

D

`1//2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to determine the condition for the three vectors to be coplanar and then find the value of the expression given in the question. ### Step-by-Step Solution: 1. **Identify the Vectors**: The three vectors given are: \[ \mathbf{A} = \alpha \hat{i} + \hat{j} + \hat{k} \] \[ \mathbf{B} = \hat{i} + \beta \hat{j} + \hat{k} \] \[ \mathbf{C} = \hat{i} + \hat{j} + \gamma \hat{k} \] 2. **Formulate the Condition for Coplanarity**: The vectors are coplanar if the determinant of the matrix formed by their coefficients is zero. The matrix is: \[ \begin{vmatrix} \alpha & 1 & 1 \\ 1 & \beta & 1 \\ 1 & 1 & \gamma \end{vmatrix} \] 3. **Calculate the Determinant**: We can calculate the determinant using the formula for a 3x3 matrix: \[ D = \alpha \begin{vmatrix} \beta & 1 \\ 1 & \gamma \end{vmatrix} - 1 \begin{vmatrix} 1 & 1 \\ 1 & \gamma \end{vmatrix} + 1 \begin{vmatrix} 1 & \beta \\ 1 & 1 \end{vmatrix} \] Calculating the minors: \[ D = \alpha (\beta \gamma - 1) - (1(\gamma - 1)) + (1(1 - \beta)) \] Simplifying this gives: \[ D = \alpha \beta \gamma - \alpha - \gamma + 1 + 1 - \beta \] \[ D = \alpha \beta \gamma - \alpha - \beta - \gamma + 2 \] 4. **Set the Determinant to Zero**: For the vectors to be coplanar: \[ \alpha \beta \gamma - \alpha - \beta - \gamma + 2 = 0 \] Rearranging gives: \[ \alpha \beta \gamma = \alpha + \beta + \gamma - 2 \] 5. **Find the Expression**: We need to find the value of: \[ \frac{1}{1 - \alpha} + \frac{1}{1 - \beta} + \frac{1}{1 - \gamma} \] Finding a common denominator: \[ = \frac{(1 - \beta)(1 - \gamma) + (1 - \alpha)(1 - \gamma) + (1 - \alpha)(1 - \beta)}{(1 - \alpha)(1 - \beta)(1 - \gamma)} \] Expanding the numerator: \[ = (1 - \beta - \gamma + \beta \gamma) + (1 - \alpha - \gamma + \alpha \gamma) + (1 - \alpha - \beta + \alpha \beta) \] \[ = 3 - (\alpha + \beta + \gamma) + (\alpha \beta + \beta \gamma + \gamma \alpha) \] Using the earlier equation \(\alpha + \beta + \gamma = \alpha \beta \gamma + 2\): \[ = 3 - (\alpha \beta \gamma + 2) + (\alpha \beta + \beta \gamma + \gamma \alpha) \] \[ = 1 + (\alpha \beta + \beta \gamma + \gamma \alpha - \alpha \beta \gamma) \] 6. **Final Calculation**: Since we have established that \(\alpha \beta \gamma = \alpha + \beta + \gamma - 2\), substituting back gives: \[ = 1 \] ### Conclusion: The value of \(\frac{1}{1 - \alpha} + \frac{1}{1 - \beta} + \frac{1}{1 - \gamma}\) is **1**.
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    BITSAT GUIDE|Exercise BITSAT Archives|21 Videos
  • TRIGONOMETRY

    BITSAT GUIDE|Exercise BITSAT Archives|41 Videos

Similar Questions

Explore conceptually related problems

If the vectors vecalpha = a hati + hatj + hatk, vecbeta = hati + b hatj + hatk and vec gamma = hati + hatj + c hatk are coplanar, then prove that (1)/(1-a ) +(1)/(1-b)+ (1)/(1-c)=1 where a ne 1, b ne 1 and c ne 1

The points with position vectors alpha hati+hatj+hatk, hati-hatj-hatk, hati+2hatj-hatk, hati+hatj+betahatk are coplanar if

If the vectors 2hati-3hatj+4hatk and hati+2hatj-hatk and m hati - hatj+2hatk are coplanar, then the value of m is

If veca =hati + hatj - hatk, vecb = 2hati + 3hatj + hatk and vec c = hati + alpha hatj are coplanar vector , then the value of alpha is :

The vectors a=hati+hatj+mhatk, b=hati+hatj+(m+1)hatk and c=hati-hatj+mhatk are coplanar, it m is equal to

If alpha,beta and gamma are the roots of x^(3)-x^(2)-1=0, then value of (1+alpha)/(1-alpha)+(1+beta)/(1-beta)+(1+gamma)/(1-gamma) is

BITSAT GUIDE-VECTOR ALGEBRA -BITSAT Archives
  1. Let veca,vecb and vecc be non-zero vectors such that no two are collin...

    Text Solution

    |

  2. If |a|= 2, |b|=5 and |a xx b|=8, then |a.b| is equal to

    Text Solution

    |

  3. The work done by the force 4hati-3hatj +2hatk in moving a particle al...

    Text Solution

    |

  4. If a .(b xx c) = 0, then the correct statement is

    Text Solution

    |

  5. If 2hati+hatj-hatk & hati-4hat j+lambda hatk are perpendicular to each...

    Text Solution

    |

  6. If a.hati=4 then (axx hatj).(2hatj-3hatk) is equal to

    Text Solution

    |

  7. The vector r is equal to

    Text Solution

    |

  8. IF r.a = 0, r. b = 0 and r. c= 0 for some non-zero vector r. Then, the...

    Text Solution

    |

  9. let a, b, c be three vectors such that a. (b + c) = b. (c + a) = c. (a...

    Text Solution

    |

  10. The position vectors of P and Q are respectively vec a and vec b . If ...

    Text Solution

    |

  11. If the position vectors of A, B and C are respectively 2hati-hatj+hatk...

    Text Solution

    |

  12. Let vecV = 2hati +hatj - hatk and vecW= hati + 3hatk . if vecU is a u...

    Text Solution

    |

  13. the vector which is orthogonal to the vector 3hati+2hatj+6hatk and is ...

    Text Solution

    |

  14. Let a, b, c be three non-coplanar vectors and p, q, r be vectors defin...

    Text Solution

    |

  15. If hata, hatb and hatc are mutually perpendicular unit vectors then |...

    Text Solution

    |

  16. The projection of the vector 2hati+hatj -3hatk on the vector hati-2hat...

    Text Solution

    |

  17. If a = hati+2hatj-3hatk and b = 3hati-hatj+2hatk then the angle betwee...

    Text Solution

    |

  18. If the vectors alpha hati+hatj+hatk,hati+betahatj+hatk and hati+hatj+g...

    Text Solution

    |

  19. If a vector alpha lie in the plane of beta and gamma , then which is...

    Text Solution

    |

  20. If vec(alpha)=2hati+3hatj-hatk, vec(beta)=-hati+2hatj-4hatk, vecgamma=...

    Text Solution

    |