Home
Class 14
MATHS
Prove that cot((pi)/(4) + 0) cot ((pi)/(...

Prove that `cot((pi)/(4) + 0) cot ((pi)/(4) - 0) =1`.

Text Solution

AI Generated Solution

The correct Answer is:
To prove that \( \cot\left(\frac{\pi}{4} + \theta\right) \cot\left(\frac{\pi}{4} - \theta\right) = 1 \), we will start with the left-hand side (LHS) and manipulate it to show that it equals the right-hand side (RHS). ### Step 1: Write down the LHS We start with: \[ \text{LHS} = \cot\left(\frac{\pi}{4} + \theta\right) \cot\left(\frac{\pi}{4} - \theta\right) \] ### Step 2: Use the cotangent addition formula Recall that: \[ \cot(A + B) = \frac{\cot A \cot B - 1}{\cot A + \cot B} \] For \( A = \frac{\pi}{4} \) and \( B = \theta \), we have: \[ \cot\left(\frac{\pi}{4} + \theta\right) = \frac{\cot\left(\frac{\pi}{4}\right) \cot(\theta) - 1}{\cot\left(\frac{\pi}{4}\right) + \cot(\theta)} \] Since \( \cot\left(\frac{\pi}{4}\right) = 1 \), this simplifies to: \[ \cot\left(\frac{\pi}{4} + \theta\right) = \frac{1 \cdot \cot(\theta) - 1}{1 + \cot(\theta)} = \frac{\cot(\theta) - 1}{1 + \cot(\theta)} \] Similarly, for \( \cot\left(\frac{\pi}{4} - \theta\right) \): \[ \cot\left(\frac{\pi}{4} - \theta\right) = \frac{\cot\left(\frac{\pi}{4}\right) \cot(-\theta) - 1}{\cot\left(\frac{\pi}{4}\right) + \cot(-\theta)} \] Since \( \cot(-\theta) = -\cot(\theta) \), we have: \[ \cot\left(\frac{\pi}{4} - \theta\right) = \frac{1 \cdot (-\cot(\theta)) - 1}{1 + (-\cot(\theta))} = \frac{-\cot(\theta) - 1}{1 - \cot(\theta)} = \frac{-(\cot(\theta) + 1)}{1 - \cot(\theta)} \] ### Step 3: Substitute back into the LHS Now substituting both results back into the LHS: \[ \text{LHS} = \left(\frac{\cot(\theta) - 1}{1 + \cot(\theta)}\right) \left(\frac{-(\cot(\theta) + 1)}{1 - \cot(\theta)}\right) \] ### Step 4: Simplify the expression Now we simplify: \[ \text{LHS} = \frac{(\cot(\theta) - 1)(-\cot(\theta) - 1)}{(1 + \cot(\theta))(1 - \cot(\theta))} \] The numerator becomes: \[ -(\cot^2(\theta) + \cot(\theta) - \cot(\theta) - 1) = -(\cot^2(\theta) - 1) = 1 - \cot^2(\theta) \] The denominator becomes: \[ 1 - \cot^2(\theta) \] Thus, we have: \[ \text{LHS} = \frac{1 - \cot^2(\theta)}{1 - \cot^2(\theta)} = 1 \] ### Step 5: Conclusion Therefore, we have shown that: \[ \cot\left(\frac{\pi}{4} + \theta\right) \cot\left(\frac{\pi}{4} - \theta\right) = 1 \] This verifies the identity.
Promotional Banner

Topper's Solved these Questions

  • ADVANCED TRIGONOMETRIC IDENTITIES

    LUCENT PUBLICATION|Exercise EXERCISE 13A|49 Videos
  • ALGEBRAIC IDENTITIES

    LUCENT PUBLICATION|Exercise Exercise - 1B|28 Videos

Similar Questions

Explore conceptually related problems

cot(-15pi)/(4)

cot((pi)/(4)-x)+cot((pi)/(4)+x)=4

Prove that cot((pi)/(4)-2cot^(-1)3)=7

cot((pi)/(4)+theta)cot((pi)/(4)-theta)=?

If (-pi)/(2) < theta < (pi)/(2) " and " theta ne pm (pi)/(4), then the value of cot ((pi)/(4) + theta) cot ((pi)/(4) - theta) is

4-cot((pi)/(4)+theta)cot((pi)/(4)-theta)=1

cot((pi)/(4)+theta)cot((pi)/(4)-theta) is

Prove that cot^(-1) 7 + 2 cot^(-1)3 = pi/4

Show that cot(pi/4+x)cot(pi/4-x)=1

Prove that: cos((3 pi)/(2)+x)cos(2 pi+x){cot((3 pi)/(2)-x)+cot(2 pi+x)}=1

LUCENT PUBLICATION-ADVANCED TRIGONOMETRIC IDENTITIES-EXERCISE 13A
  1. Prove that cot((pi)/(4) + 0) cot ((pi)/(4) - 0) =1.

    Text Solution

    |

  2. If p and q are two quantities such that p^(2) +q^(2) =1, then maximum...

    Text Solution

    |

  3. If theta is real then 3 - cos theta + cos (theta + (pi)/(3)) lies in t...

    Text Solution

    |

  4. If sinA=(1)/(sqrt(10))andsinB=(1)/(sqrt(5)), where A and B are positiv...

    Text Solution

    |

  5. If cos (theta - alpha) = a, cos (theta - beta) = b, then the value of ...

    Text Solution

    |

  6. A positive acute angle is divided into two parts whose tangents are 1/...

    Text Solution

    |

  7. In trianglePQR, angleR = (pi)/(2). If tan((P)/(2)) " and " tan ((Q)/...

    Text Solution

    |

  8. The value of (sin 55^(@) - cos 55^(@))/(sin10^(@) is

    Text Solution

    |

  9. The value of cos 15^(@) - sin 15^(@) is

    Text Solution

    |

  10. Minimum value of 27^(cos 2x) 81^( sin 2x) is

    Text Solution

    |

  11. 3 (sinx - cosx)^(4) + 6 (sinx + cosx)^(2) + 4(sin^(6)x + cos^(6)x) =

    Text Solution

    |

  12. If sin theta = sin 15^(@) + sin 45^(@), " where " 0^(@) lt theta lt ...

    Text Solution

    |

  13. If cos alpha + cos beta = 0 = sin alpha + sin beta, then value of cos...

    Text Solution

    |

  14. If A + B = 45^(@), " then " (cot A - 1) ( cot B - 1) is

    Text Solution

    |

  15. If alpha, beta in (0, (pi)/(2)), sin alpha = (4)/(5) " and " cos (alp...

    Text Solution

    |

  16. The value of tan 40^(@) + tan 20^(@) + sqrt(3) tan 20^(@) tan 40^(@) ...

    Text Solution

    |

  17. The value of cos 20^(@) + Cos 100^(@) + cos 140^(@) is

    Text Solution

    |

  18. If (-pi)/(2) < theta < (pi)/(2) " and " theta ne pm (pi)/(4), then th...

    Text Solution

    |

  19. If sin theta =3 sin ( theta + 2 alpha), then the value of tan (theta...

    Text Solution

    |

  20. If x=ycos""(2pi)/(3)=zcos""(4pi)/(3), then xy+yz+zx is equal to

    Text Solution

    |

  21. (cos 9^(@) + sin 9^(@))/(cos 9^(@) - sin 9^(@)) equals

    Text Solution

    |