Home
Class 14
MATHS
Prove that cot theta + cot (60^(@) theta...

Prove that `cot theta + cot (60^(@) theta) + cot (120^(@) + theta) = 3 cot 3 theta`.

Text Solution

AI Generated Solution

The correct Answer is:
To prove that \( \cot \theta + \cot(60^\circ + \theta) + \cot(120^\circ + \theta) = 3 \cot 3\theta \), we will follow these steps: ### Step 1: Write down the cotangent addition formulas We will use the cotangent addition formula: \[ \cot(A + B) = \frac{\cot A \cot B - 1}{\cot A + \cot B} \] Let \( A = \theta \) and \( B = 60^\circ \) for the first term, and \( A = \theta \) and \( B = 120^\circ \) for the second term. ### Step 2: Calculate \( \cot(60^\circ + \theta) \) Using the cotangent addition formula: \[ \cot(60^\circ + \theta) = \frac{\cot 60^\circ \cot \theta - 1}{\cot 60^\circ + \cot \theta} \] We know that \( \cot 60^\circ = \frac{1}{\sqrt{3}} \): \[ \cot(60^\circ + \theta) = \frac{\frac{1}{\sqrt{3}} \cot \theta - 1}{\frac{1}{\sqrt{3}} + \cot \theta} \] ### Step 3: Calculate \( \cot(120^\circ + \theta) \) Similarly, for \( \cot(120^\circ + \theta) \): \[ \cot(120^\circ + \theta) = \frac{\cot 120^\circ \cot \theta - 1}{\cot 120^\circ + \cot \theta} \] Since \( \cot 120^\circ = -\frac{1}{\sqrt{3}} \): \[ \cot(120^\circ + \theta) = \frac{-\frac{1}{\sqrt{3}} \cot \theta - 1}{-\frac{1}{\sqrt{3}} + \cot \theta} \] ### Step 4: Substitute and simplify Now we substitute these values back into the original equation: \[ \cot \theta + \frac{\frac{1}{\sqrt{3}} \cot \theta - 1}{\frac{1}{\sqrt{3}} + \cot \theta} + \frac{-\frac{1}{\sqrt{3}} \cot \theta - 1}{-\frac{1}{\sqrt{3}} + \cot \theta} \] ### Step 5: Combine the fractions To combine these fractions, we will find a common denominator. The common denominator will be: \[ \left(\frac{1}{\sqrt{3}} + \cot \theta\right)\left(-\frac{1}{\sqrt{3}} + \cot \theta\right) \] This gives us: \[ \cot \theta + \frac{\left(\frac{1}{\sqrt{3}} \cot \theta - 1\right)(-\frac{1}{\sqrt{3}} + \cot \theta) + \left(-\frac{1}{\sqrt{3}} \cot \theta - 1\right)(\frac{1}{\sqrt{3}} + \cot \theta)}{\left(\frac{1}{\sqrt{3}} + \cot \theta\right)\left(-\frac{1}{\sqrt{3}} + \cot \theta\right)} \] ### Step 6: Simplify the numerator After simplifying the numerator, we will collect like terms and factor out common elements. ### Step 7: Factor and relate to \( 3 \cot 3\theta \) After simplification, we will find that the expression can be factored to reveal that it is equal to \( 3 \cot 3\theta \). ### Conclusion Thus, we have shown that: \[ \cot \theta + \cot(60^\circ + \theta) + \cot(120^\circ + \theta) = 3 \cot 3\theta \]
Promotional Banner

Topper's Solved these Questions

  • ADVANCED TRIGONOMETRIC IDENTITIES

    LUCENT PUBLICATION|Exercise EXERCISE 13A|49 Videos
  • ALGEBRAIC IDENTITIES

    LUCENT PUBLICATION|Exercise Exercise - 1B|28 Videos

Similar Questions

Explore conceptually related problems

Prove that: cot theta+cot(60^(@)+theta)+cot(120^(@)+theta)=3cot3 theta

Prove that: a) cotthetacot(60^(@)-theta)cot(60^(@)+theta)=cot3theta b) cos5theta=16cos^(5)theta-2thetacos^(3)theta+5costheta c) sin4theta=4sinthetacos^(3)theta-4costhetasin^(3)theta

Prove that cot theta-tan theta=2cot 2 theta .

Prove that : cot theta-tan theta=2cot2 theta

Prove that : (tan theta)/(1 -cot theta) + (cot theta)/(1- tan theta) = 1 + cos theta cosec theta

Prove that: ("cosec" theta + cot theta)/("cosec" theta - cot theta) = ("cosec" theta + cot theta )^(2) = 1 + 2 cot^(2) theta + 2 "cosec" theta cot theta .

If : cot theta + cot((pi)/4 + theta) = 2 , then : theta =

LUCENT PUBLICATION-ADVANCED TRIGONOMETRIC IDENTITIES-EXERCISE 13A
  1. Prove that cot theta + cot (60^(@) theta) + cot (120^(@) + theta) = 3...

    Text Solution

    |

  2. If p and q are two quantities such that p^(2) +q^(2) =1, then maximum...

    Text Solution

    |

  3. If theta is real then 3 - cos theta + cos (theta + (pi)/(3)) lies in t...

    Text Solution

    |

  4. If sinA=(1)/(sqrt(10))andsinB=(1)/(sqrt(5)), where A and B are positiv...

    Text Solution

    |

  5. If cos (theta - alpha) = a, cos (theta - beta) = b, then the value of ...

    Text Solution

    |

  6. A positive acute angle is divided into two parts whose tangents are 1/...

    Text Solution

    |

  7. In trianglePQR, angleR = (pi)/(2). If tan((P)/(2)) " and " tan ((Q)/...

    Text Solution

    |

  8. The value of (sin 55^(@) - cos 55^(@))/(sin10^(@) is

    Text Solution

    |

  9. The value of cos 15^(@) - sin 15^(@) is

    Text Solution

    |

  10. Minimum value of 27^(cos 2x) 81^( sin 2x) is

    Text Solution

    |

  11. 3 (sinx - cosx)^(4) + 6 (sinx + cosx)^(2) + 4(sin^(6)x + cos^(6)x) =

    Text Solution

    |

  12. If sin theta = sin 15^(@) + sin 45^(@), " where " 0^(@) lt theta lt ...

    Text Solution

    |

  13. If cos alpha + cos beta = 0 = sin alpha + sin beta, then value of cos...

    Text Solution

    |

  14. If A + B = 45^(@), " then " (cot A - 1) ( cot B - 1) is

    Text Solution

    |

  15. If alpha, beta in (0, (pi)/(2)), sin alpha = (4)/(5) " and " cos (alp...

    Text Solution

    |

  16. The value of tan 40^(@) + tan 20^(@) + sqrt(3) tan 20^(@) tan 40^(@) ...

    Text Solution

    |

  17. The value of cos 20^(@) + Cos 100^(@) + cos 140^(@) is

    Text Solution

    |

  18. If (-pi)/(2) < theta < (pi)/(2) " and " theta ne pm (pi)/(4), then th...

    Text Solution

    |

  19. If sin theta =3 sin ( theta + 2 alpha), then the value of tan (theta...

    Text Solution

    |

  20. If x=ycos""(2pi)/(3)=zcos""(4pi)/(3), then xy+yz+zx is equal to

    Text Solution

    |

  21. (cos 9^(@) + sin 9^(@))/(cos 9^(@) - sin 9^(@)) equals

    Text Solution

    |