Home
Class 14
MATHS
Prove that sin theta cos^(3)theta - cos...

Prove that `sin theta cos^(3)theta - cos theta sin^(3) theta = (1)/(4) sin 4 theta`.

Text Solution

Verified by Experts

The correct Answer is:
`= (sin 4theta)/(4)`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • ADVANCED TRIGONOMETRIC IDENTITIES

    LUCENT PUBLICATION|Exercise EXERCISE 13A|49 Videos
  • ALGEBRAIC IDENTITIES

    LUCENT PUBLICATION|Exercise Exercise - 1B|28 Videos

Similar Questions

Explore conceptually related problems

sin theta cos ^ (3) theta-cos theta sin ^ (3) theta = (1) / (4) sin4 theta

Prove that: sin theta cos^(3)theta-cos theta sin^(3)theta=(1)/(4)sin4 theta

Knowledge Check

  • 4 sin theta * cos^(3) theta-4 cos theta * sin ^(3)theta= A) 4 cos theta B) cos 4 theta C) 4 sin theta D) sin 4 theta

    A
    `4 cos theta`
    B
    `cos 4 theta`
    C
    `4 sin theta`
    D
    `sin 4 theta`
  • Similar Questions

    Explore conceptually related problems

    If sin^3 theta cos theta - cos^3 theta sin theta = 1//4, then theta =

    cos^(3)theta*sin3 theta+sin^(3)theta*cos3 theta=(3)/(4)sin4 theta

    Solve sin^(3)theta cos theta-cos^(3)theta sin theta=(1)/(4)

    Prove that cos^(3)thetasin3theta+sin^(3)theta cos 3theta=(3)/(4)sin 4 theta .

    Prove that (1)/(2){(sin theta)/(1+cos theta)+(1+cos theta)/(sin theta)}=(1)/(sin theta)

    Prove that (sin theta - 2 sin^(3) theta)/(2 cos^(3) theta - cos theta) = tan theta

    Prove that (3 + cos 4theta) cos 2theta = 4(cos^(8)theta - sin^(8)theta) .