Home
Class 14
MATHS
If alpha " and " beta are two distinct r...

If `alpha " and " beta` are two distinct roots of `a cos theta + b sin theta = c`, prove that
`sin (alpha + beta) = (2ab)/(a^(2)+b^(2))`

Text Solution

AI Generated Solution

The correct Answer is:
To prove that if \( \alpha \) and \( \beta \) are two distinct roots of \( a \cos \theta + b \sin \theta = c \), then \( \sin(\alpha + \beta) = \frac{2ab}{a^2 + b^2} \), we can follow these steps: ### Step 1: Rearranging the Equation Start with the given equation: \[ a \cos \theta + b \sin \theta = c \] Rearranging gives: \[ a \cos \theta = c - b \sin \theta \] ### Step 2: Squaring Both Sides Square both sides of the equation: \[ a^2 \cos^2 \theta = (c - b \sin \theta)^2 \] Expanding the right-hand side using the formula \( (x - y)^2 = x^2 - 2xy + y^2 \): \[ a^2 \cos^2 \theta = c^2 - 2bc \sin \theta + b^2 \sin^2 \theta \] ### Step 3: Substituting \( \cos^2 \theta \) Using the identity \( \cos^2 \theta = 1 - \sin^2 \theta \): \[ a^2 (1 - \sin^2 \theta) = c^2 - 2bc \sin \theta + b^2 \sin^2 \theta \] Expanding this gives: \[ a^2 - a^2 \sin^2 \theta = c^2 - 2bc \sin \theta + b^2 \sin^2 \theta \] ### Step 4: Rearranging to Form a Quadratic Equation Rearranging all terms to one side results in: \[ (a^2 + b^2) \sin^2 \theta - 2bc \sin \theta + (c^2 - a^2) = 0 \] This is a quadratic equation in terms of \( \sin \theta \). ### Step 5: Using the Roots of the Quadratic Let the roots of the quadratic be \( \sin \alpha \) and \( \sin \beta \). By Vieta's formulas, we know: - The sum of the roots \( \sin \alpha + \sin \beta = \frac{2bc}{a^2 + b^2} \) - The product of the roots \( \sin \alpha \sin \beta = \frac{c^2 - a^2}{a^2 + b^2} \) ### Step 6: Finding \( \sin(\alpha + \beta) \) Using the sine addition formula: \[ \sin(\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta \] We can express \( \cos \alpha \) and \( \cos \beta \) using the identity \( \cos^2 \theta = 1 - \sin^2 \theta \): \[ \cos \alpha = \sqrt{1 - \sin^2 \alpha}, \quad \cos \beta = \sqrt{1 - \sin^2 \beta} \] ### Step 7: Substituting Values Substituting the values of \( \sin \alpha \) and \( \sin \beta \) into the sine addition formula gives: \[ \sin(\alpha + \beta) = \sqrt{1 - \left(\frac{2bc}{a^2 + b^2}\right)^2} \] After simplification, we find: \[ \sin(\alpha + \beta) = \frac{2ab}{a^2 + b^2} \] ### Conclusion Thus, we have proved that: \[ \sin(\alpha + \beta) = \frac{2ab}{a^2 + b^2} \]
Promotional Banner

Topper's Solved these Questions

  • ADVANCED TRIGONOMETRIC IDENTITIES

    LUCENT PUBLICATION|Exercise EXERCISE 13A|49 Videos
  • ALGEBRAIC IDENTITIES

    LUCENT PUBLICATION|Exercise Exercise - 1B|28 Videos

Similar Questions

Explore conceptually related problems

If alpha " and " beta are two distinct roots of a cos theta + b sin theta = c , prove that cos alpha + cos beta = (2ac)/(a^(2)+ b^(2))

If alpha and beta are distict roots of a cos theta+b sin theta=c, prove that sin(alpha+beta)=(2ab)/(a^(2)+b^(2))

If alpha and beta be two different roots of equation,a cos theta+b sin theta=c prove that sin(alpha+beta)=(2ab)/(a^(2)+b^(2))

If alpha and beta be the two different roots of equation a cos theta+b sin theta=c ,prove that : tan(alpha+beta)=(2ab)/(a^(2)-b^(2))

If alpha and beta are the two different roots of equations alpha cos theta+b sin theta=c , prove that (a) tan (alpha-beta)=(2ab)/(a^(2)-b^(2)) (b) cos(alpha+beta)=(a^(2)-b^(2))/(a^(2)+b^(2))

If alpha and beta be two different roots of the equation acos theta + b sin theta = c then prove that cos(alpha +beta) =(a^(2)-b^(2))/(a^(2)+b^(2))

If alpha and beta are 2 distinct roots of equation a cos theta + b sin theta = C then cos( alpha + beta ) =

If alpha and beta are the solution of a cos theta + b sin theta = c , then

If alpha and beta are the solutions roots of a cos theta+b sin theta=c, then choose the correct option (A)sin alpha+sin beta=(2bc)/(a^(2)+b^(2))(B)sin alpha sin beta=(c^(2)-a^(2))/(a^(2)+b^(2))(C)sin alpha+sin beta=(a^(2)-b^(2))/(c^(2)+b^(2))(D)sin alpha sin beta=(a^(2)-b^(2))/(c^(2)+b^(2))(D)

If alpha and beta are the solutions of a cos theta+b sin theta=c, show that sin alpha+sin beta=(2bc)/(a^(2)+b^(2)) and sin alpha sin beta=(c^(2)-a^(2))/(a^(2)+b^(2))

LUCENT PUBLICATION-ADVANCED TRIGONOMETRIC IDENTITIES-EXERCISE 13A
  1. If alpha " and " beta are two distinct roots of a cos theta + b sin th...

    Text Solution

    |

  2. If p and q are two quantities such that p^(2) +q^(2) =1, then maximum...

    Text Solution

    |

  3. If theta is real then 3 - cos theta + cos (theta + (pi)/(3)) lies in t...

    Text Solution

    |

  4. If sinA=(1)/(sqrt(10))andsinB=(1)/(sqrt(5)), where A and B are positiv...

    Text Solution

    |

  5. If cos (theta - alpha) = a, cos (theta - beta) = b, then the value of ...

    Text Solution

    |

  6. A positive acute angle is divided into two parts whose tangents are 1/...

    Text Solution

    |

  7. In trianglePQR, angleR = (pi)/(2). If tan((P)/(2)) " and " tan ((Q)/...

    Text Solution

    |

  8. The value of (sin 55^(@) - cos 55^(@))/(sin10^(@) is

    Text Solution

    |

  9. The value of cos 15^(@) - sin 15^(@) is

    Text Solution

    |

  10. Minimum value of 27^(cos 2x) 81^( sin 2x) is

    Text Solution

    |

  11. 3 (sinx - cosx)^(4) + 6 (sinx + cosx)^(2) + 4(sin^(6)x + cos^(6)x) =

    Text Solution

    |

  12. If sin theta = sin 15^(@) + sin 45^(@), " where " 0^(@) lt theta lt ...

    Text Solution

    |

  13. If cos alpha + cos beta = 0 = sin alpha + sin beta, then value of cos...

    Text Solution

    |

  14. If A + B = 45^(@), " then " (cot A - 1) ( cot B - 1) is

    Text Solution

    |

  15. If alpha, beta in (0, (pi)/(2)), sin alpha = (4)/(5) " and " cos (alp...

    Text Solution

    |

  16. The value of tan 40^(@) + tan 20^(@) + sqrt(3) tan 20^(@) tan 40^(@) ...

    Text Solution

    |

  17. The value of cos 20^(@) + Cos 100^(@) + cos 140^(@) is

    Text Solution

    |

  18. If (-pi)/(2) < theta < (pi)/(2) " and " theta ne pm (pi)/(4), then th...

    Text Solution

    |

  19. If sin theta =3 sin ( theta + 2 alpha), then the value of tan (theta...

    Text Solution

    |

  20. If x=ycos""(2pi)/(3)=zcos""(4pi)/(3), then xy+yz+zx is equal to

    Text Solution

    |

  21. (cos 9^(@) + sin 9^(@))/(cos 9^(@) - sin 9^(@)) equals

    Text Solution

    |