Home
Class 14
MATHS
Prove that sin 6^(@) sin 42^(@) sin 66^(...

Prove that `sin 6^(@) sin 42^(@) sin 66^(@) sin 78^(@) = (1)/(16)`.

Text Solution

AI Generated Solution

The correct Answer is:
To prove that \( \sin 6^\circ \sin 42^\circ \sin 66^\circ \sin 78^\circ = \frac{1}{16} \), we will follow a systematic approach using trigonometric identities. ### Step-by-Step Solution: 1. **Start with the Left-Hand Side (LHS)**: \[ \text{LHS} = \sin 6^\circ \sin 42^\circ \sin 66^\circ \sin 78^\circ \] 2. **Multiply LHS by 1 (in the form of \( \frac{1}{4} \cdot 4 \))**: \[ \text{LHS} = \frac{1}{4} \cdot 4 \cdot \sin 6^\circ \sin 42^\circ \sin 66^\circ \sin 78^\circ \] 3. **Rearranging the terms**: \[ \text{LHS} = \frac{1}{4} \left( 2 \sin 6^\circ \sin 66^\circ \right) \left( 2 \sin 42^\circ \sin 78^\circ \right) \] 4. **Using the identity \( 2 \sin A \sin B = \cos(A - B) - \cos(A + B) \)**: - For \( 2 \sin 6^\circ \sin 66^\circ \): \[ 2 \sin 6^\circ \sin 66^\circ = \cos(66^\circ - 6^\circ) - \cos(66^\circ + 6^\circ) = \cos 60^\circ - \cos 72^\circ \] - For \( 2 \sin 42^\circ \sin 78^\circ \): \[ 2 \sin 42^\circ \sin 78^\circ = \cos(78^\circ - 42^\circ) - \cos(78^\circ + 42^\circ) = \cos 36^\circ - \cos 120^\circ \] 5. **Substituting back into LHS**: \[ \text{LHS} = \frac{1}{4} \left( \cos 60^\circ - \cos 72^\circ \right) \left( \cos 36^\circ - \cos 120^\circ \right) \] 6. **Using known values of cosine**: - \( \cos 60^\circ = \frac{1}{2} \) - \( \cos 72^\circ = \frac{\sqrt{5}-1}{4} \) - \( \cos 36^\circ = \frac{\sqrt{5}+1}{4} \) - \( \cos 120^\circ = -\frac{1}{2} \) 7. **Substituting these values**: \[ \text{LHS} = \frac{1}{4} \left( \frac{1}{2} - \frac{\sqrt{5}-1}{4} \right) \left( \frac{\sqrt{5}+1}{4} + \frac{1}{2} \right) \] 8. **Simplifying the expressions**: - First term: \[ \frac{1}{2} - \frac{\sqrt{5}-1}{4} = \frac{2}{4} - \frac{\sqrt{5}-1}{4} = \frac{2 - \sqrt{5} + 1}{4} = \frac{3 - \sqrt{5}}{4} \] - Second term: \[ \frac{\sqrt{5}+1}{4} + \frac{1}{2} = \frac{\sqrt{5}+1}{4} + \frac{2}{4} = \frac{\sqrt{5}+3}{4} \] 9. **Final multiplication**: \[ \text{LHS} = \frac{1}{4} \cdot \frac{3 - \sqrt{5}}{4} \cdot \frac{\sqrt{5}+3}{4} \] \[ = \frac{1}{4} \cdot \frac{(3 - \sqrt{5})(\sqrt{5} + 3)}{16} \] \[ = \frac{1}{4} \cdot \frac{9 - 5}{16} = \frac{1}{4} \cdot \frac{4}{16} = \frac{1}{16} \] 10. **Conclusion**: \[ \text{LHS} = \frac{1}{16} \] Thus, we have proved that: \[ \sin 6^\circ \sin 42^\circ \sin 66^\circ \sin 78^\circ = \frac{1}{16} \]
Promotional Banner

Topper's Solved these Questions

  • ADVANCED TRIGONOMETRIC IDENTITIES

    LUCENT PUBLICATION|Exercise EXERCISE 13A|49 Videos
  • ALGEBRAIC IDENTITIES

    LUCENT PUBLICATION|Exercise Exercise - 1B|28 Videos

Similar Questions

Explore conceptually related problems

sin 20^(@) sin 40^(@) sin 60^(@) sin 80^(@) =(3)/(16)

Find sin6^(@)sin42^(@)sin66^(@)sin78^(@) .

Prove that: sin6^(@)sin42^(@)sin66^(@)sin78^(@)=1/16

Prove that cos 6^(@) cos 42^(@) cos 66^(@) cos 78^(@) =(1)/(16)

Prove that sin10^(@) sin 30^(@) sin 50^(@) sin 70^(@)=1/16

Prove that: sin12^(@)sin48^(@)sin54^(@)=1/8

cos66^(@)+sin84^(@)=

LUCENT PUBLICATION-ADVANCED TRIGONOMETRIC IDENTITIES-EXERCISE 13A
  1. Prove that sin 6^(@) sin 42^(@) sin 66^(@) sin 78^(@) = (1)/(16).

    Text Solution

    |

  2. If p and q are two quantities such that p^(2) +q^(2) =1, then maximum...

    Text Solution

    |

  3. If theta is real then 3 - cos theta + cos (theta + (pi)/(3)) lies in t...

    Text Solution

    |

  4. If sinA=(1)/(sqrt(10))andsinB=(1)/(sqrt(5)), where A and B are positiv...

    Text Solution

    |

  5. If cos (theta - alpha) = a, cos (theta - beta) = b, then the value of ...

    Text Solution

    |

  6. A positive acute angle is divided into two parts whose tangents are 1/...

    Text Solution

    |

  7. In trianglePQR, angleR = (pi)/(2). If tan((P)/(2)) " and " tan ((Q)/...

    Text Solution

    |

  8. The value of (sin 55^(@) - cos 55^(@))/(sin10^(@) is

    Text Solution

    |

  9. The value of cos 15^(@) - sin 15^(@) is

    Text Solution

    |

  10. Minimum value of 27^(cos 2x) 81^( sin 2x) is

    Text Solution

    |

  11. 3 (sinx - cosx)^(4) + 6 (sinx + cosx)^(2) + 4(sin^(6)x + cos^(6)x) =

    Text Solution

    |

  12. If sin theta = sin 15^(@) + sin 45^(@), " where " 0^(@) lt theta lt ...

    Text Solution

    |

  13. If cos alpha + cos beta = 0 = sin alpha + sin beta, then value of cos...

    Text Solution

    |

  14. If A + B = 45^(@), " then " (cot A - 1) ( cot B - 1) is

    Text Solution

    |

  15. If alpha, beta in (0, (pi)/(2)), sin alpha = (4)/(5) " and " cos (alp...

    Text Solution

    |

  16. The value of tan 40^(@) + tan 20^(@) + sqrt(3) tan 20^(@) tan 40^(@) ...

    Text Solution

    |

  17. The value of cos 20^(@) + Cos 100^(@) + cos 140^(@) is

    Text Solution

    |

  18. If (-pi)/(2) < theta < (pi)/(2) " and " theta ne pm (pi)/(4), then th...

    Text Solution

    |

  19. If sin theta =3 sin ( theta + 2 alpha), then the value of tan (theta...

    Text Solution

    |

  20. If x=ycos""(2pi)/(3)=zcos""(4pi)/(3), then xy+yz+zx is equal to

    Text Solution

    |

  21. (cos 9^(@) + sin 9^(@))/(cos 9^(@) - sin 9^(@)) equals

    Text Solution

    |