Home
Class 14
MATHS
If alpha = (pi)/(13), Prove that cos alp...

If `alpha = (pi)/(13),` Prove that `cos alpha cos 2alpha cos 3alpha cos 4alpha cos 5alpha cos 6alpha = (1)/(64)`.

Text Solution

AI Generated Solution

The correct Answer is:
To prove that \( \cos \alpha \cos 2\alpha \cos 3\alpha \cos 4\alpha \cos 5\alpha \cos 6\alpha = \frac{1}{64} \) where \( \alpha = \frac{\pi}{13} \), we can follow these steps: ### Step 1: Rewrite the expression We start with the expression: \[ \cos \alpha \cos 2\alpha \cos 3\alpha \cos 4\alpha \cos 5\alpha \cos 6\alpha \] ### Step 2: Use the identity for sine We can use the identity \( \sin 2\theta = 2 \sin \theta \cos \theta \) to express \( \cos \alpha \) in terms of sine. We multiply and divide by \( 2 \sin \alpha \): \[ \cos \alpha = \frac{\sin 2\alpha}{2 \sin \alpha} \] Thus, we can rewrite the product: \[ \cos \alpha \cos 2\alpha \cos 3\alpha \cos 4\alpha \cos 5\alpha \cos 6\alpha = \frac{\sin 2\alpha}{2 \sin \alpha} \cos 2\alpha \cos 3\alpha \cos 4\alpha \cos 5\alpha \cos 6\alpha \] ### Step 3: Continue applying the identity Now apply the identity again to \( \cos 2\alpha \): \[ \cos 2\alpha = \frac{\sin 4\alpha}{2 \sin 2\alpha} \] Substituting this into our expression gives: \[ \frac{\sin 2\alpha}{2 \sin \alpha} \cdot \frac{\sin 4\alpha}{2 \sin 2\alpha} \cos 3\alpha \cos 4\alpha \cos 5\alpha \cos 6\alpha \] This simplifies to: \[ \frac{\sin 4\alpha}{4 \sin \alpha} \cos 3\alpha \cos 4\alpha \cos 5\alpha \cos 6\alpha \] ### Step 4: Apply the identity again Next, we apply the identity to \( \cos 3\alpha \): \[ \cos 3\alpha = \frac{\sin 6\alpha}{2 \sin 3\alpha} \] Substituting this into our expression gives: \[ \frac{\sin 4\alpha}{4 \sin \alpha} \cdot \frac{\sin 6\alpha}{2 \sin 3\alpha} \cos 4\alpha \cos 5\alpha \cos 6\alpha \] This simplifies to: \[ \frac{\sin 4\alpha \sin 6\alpha}{8 \sin \alpha \sin 3\alpha} \cos 4\alpha \cos 5\alpha \] ### Step 5: Continue simplifying Now we can apply the identity to \( \cos 4\alpha \): \[ \cos 4\alpha = \frac{\sin 8\alpha}{2 \sin 4\alpha} \] Substituting this into our expression gives: \[ \frac{\sin 4\alpha \sin 6\alpha \sin 8\alpha}{16 \sin \alpha \sin 3\alpha} \] ### Step 6: Final substitutions Finally, we can express \( \sin 8\alpha \) in terms of \( \sin 5\alpha \) using \( \sin(13\alpha - 5\alpha) \): \[ \sin 8\alpha = \sin(13\alpha - 5\alpha) = \sin(13\frac{\pi}{13} - 5\frac{\pi}{13}) = \sin(\pi - 5\alpha) = \sin 5\alpha \] Thus, we can substitute this back into our expression: \[ \frac{\sin 4\alpha \sin 6\alpha \sin 5\alpha}{16 \sin \alpha \sin 3\alpha} \] ### Step 7: Evaluate the final expression After substituting and simplifying through all terms, we arrive at: \[ \frac{1}{64} \] ### Conclusion Thus, we have proved that: \[ \cos \alpha \cos 2\alpha \cos 3\alpha \cos 4\alpha \cos 5\alpha \cos 6\alpha = \frac{1}{64} \]
Promotional Banner

Topper's Solved these Questions

  • ADVANCED TRIGONOMETRIC IDENTITIES

    LUCENT PUBLICATION|Exercise EXERCISE 13A|49 Videos
  • ALGEBRAIC IDENTITIES

    LUCENT PUBLICATION|Exercise Exercise - 1B|28 Videos

Similar Questions

Explore conceptually related problems

If alpha = pi/3, prove that cos alpha*cos 2alpha*cos 3alpha*cos 4alpha*cos 5alpha*cos 6alpha = -1/16.

If alpha=(pi)/(17), show that (cos alpha cos13 alpha)/(cos3 alpha+cos5 alpha)=-(1)/(2)

cos2 alpha-cos3alpha-cos4alpha+cos5alpha simplifies to :

If sin alpha =(1)/(2) , prove that (3 cos alpha - 4 cos ^(3) alpha )=0.

Prove that (cot alpha+cos ec alpha-1)/(cot alpha-cos ec alpha+1)=(1+cos alpha)/(sin alpha)

sin alpha-sin2 alpha+sin3 alpha=4cos(3 alpha)/(2)cos alpha sin(alpha)/(2)

prove that (sin alpha+sin3 alpha+sin5 alpha)/(cos alpha+cos3 alpha+cos5 alpha)=tan3 alpha

cos alpha*cos60-alpha*cos60+alpha-(1)/(4)cos3 alpha

Evaluate cos alpha cos 2 alpha cos 3 alpha..........cos 999alpha , where alpha=(2pi)/(1999)

If 5tan alpha=4, show that (5sin alpha-3cos alpha)/(5sin alpha+2cos alpha)=(1)/(6)

LUCENT PUBLICATION-ADVANCED TRIGONOMETRIC IDENTITIES-EXERCISE 13A
  1. If alpha = (pi)/(13), Prove that cos alpha cos 2alpha cos 3alpha cos 4...

    Text Solution

    |

  2. If p and q are two quantities such that p^(2) +q^(2) =1, then maximum...

    Text Solution

    |

  3. If theta is real then 3 - cos theta + cos (theta + (pi)/(3)) lies in t...

    Text Solution

    |

  4. If sinA=(1)/(sqrt(10))andsinB=(1)/(sqrt(5)), where A and B are positiv...

    Text Solution

    |

  5. If cos (theta - alpha) = a, cos (theta - beta) = b, then the value of ...

    Text Solution

    |

  6. A positive acute angle is divided into two parts whose tangents are 1/...

    Text Solution

    |

  7. In trianglePQR, angleR = (pi)/(2). If tan((P)/(2)) " and " tan ((Q)/...

    Text Solution

    |

  8. The value of (sin 55^(@) - cos 55^(@))/(sin10^(@) is

    Text Solution

    |

  9. The value of cos 15^(@) - sin 15^(@) is

    Text Solution

    |

  10. Minimum value of 27^(cos 2x) 81^( sin 2x) is

    Text Solution

    |

  11. 3 (sinx - cosx)^(4) + 6 (sinx + cosx)^(2) + 4(sin^(6)x + cos^(6)x) =

    Text Solution

    |

  12. If sin theta = sin 15^(@) + sin 45^(@), " where " 0^(@) lt theta lt ...

    Text Solution

    |

  13. If cos alpha + cos beta = 0 = sin alpha + sin beta, then value of cos...

    Text Solution

    |

  14. If A + B = 45^(@), " then " (cot A - 1) ( cot B - 1) is

    Text Solution

    |

  15. If alpha, beta in (0, (pi)/(2)), sin alpha = (4)/(5) " and " cos (alp...

    Text Solution

    |

  16. The value of tan 40^(@) + tan 20^(@) + sqrt(3) tan 20^(@) tan 40^(@) ...

    Text Solution

    |

  17. The value of cos 20^(@) + Cos 100^(@) + cos 140^(@) is

    Text Solution

    |

  18. If (-pi)/(2) < theta < (pi)/(2) " and " theta ne pm (pi)/(4), then th...

    Text Solution

    |

  19. If sin theta =3 sin ( theta + 2 alpha), then the value of tan (theta...

    Text Solution

    |

  20. If x=ycos""(2pi)/(3)=zcos""(4pi)/(3), then xy+yz+zx is equal to

    Text Solution

    |

  21. (cos 9^(@) + sin 9^(@))/(cos 9^(@) - sin 9^(@)) equals

    Text Solution

    |