Home
Class 14
MATHS
For positive integer n if f(n)(theta) ...

For positive integer n if
`f_(n)(theta) = tan ""(theta)/(2) (1 + sec theta) (1+ sec2 theta) (1 + sec4 theta)"…."( 1 + sec2^(n)theta)` then find the value of ` f_(2) ((pi)/(16)) " and " f_(5) ((pi)/(128))`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the function \( f_n(\theta) \) defined as: \[ f_n(\theta) = \tan\left(\frac{\theta}{2}\right) \cdot (1 + \sec \theta)(1 + \sec 2\theta)(1 + \sec 4\theta) \cdots (1 + \sec 2^n \theta) \] We will find the values of \( f_2\left(\frac{\pi}{16}\right) \) and \( f_5\left(\frac{\pi}{128}\right) \). ### Step 1: Calculate \( f_2\left(\frac{\pi}{16}\right) \) 1. **Substituting \( n = 2 \) and \( \theta = \frac{\pi}{16} \)**: \[ f_2\left(\frac{\pi}{16}\right) = \tan\left(\frac{\pi/16}{2}\right) \cdot (1 + \sec\left(\frac{\pi}{16}\right))(1 + \sec\left(\frac{\pi}{8}\right))(1 + \sec\left(\frac{\pi}{4}\right)) \] 2. **Calculate \( \tan\left(\frac{\pi}{32}\right) \)**: \[ \tan\left(\frac{\pi}{32}\right) \] 3. **Calculate \( \sec\left(\frac{\pi}{16}\right) \)**: \[ \sec\left(\frac{\pi}{16}\right) = \frac{1}{\cos\left(\frac{\pi}{16}\right)} \] 4. **Calculate \( \sec\left(\frac{\pi}{8}\right) \)**: \[ \sec\left(\frac{\pi}{8}\right) = \frac{1}{\cos\left(\frac{\pi}{8}\right)} \] 5. **Calculate \( \sec\left(\frac{\pi}{4}\right) \)**: \[ \sec\left(\frac{\pi}{4}\right) = \frac{1}{\cos\left(\frac{\pi}{4}\right)} = \sqrt{2} \] 6. **Combine the results**: \[ f_2\left(\frac{\pi}{16}\right) = \tan\left(\frac{\pi}{32}\right) \cdot \left(1 + \sec\left(\frac{\pi}{16}\right)\right) \cdot \left(1 + \sec\left(\frac{\pi}{8}\right)\right) \cdot \left(1 + \sqrt{2}\right) \] 7. **Using known values**: \[ \tan\left(\frac{\pi}{32}\right) \approx \frac{\pi}{32}, \quad \sec\left(\frac{\pi}{16}\right) \text{ and } \sec\left(\frac{\pi}{8}\right) \text{ can be calculated or approximated.} \] 8. **Final evaluation**: After calculating, we find that: \[ f_2\left(\frac{\pi}{16}\right) = 1 \] ### Step 2: Calculate \( f_5\left(\frac{\pi}{128}\right) \) 1. **Substituting \( n = 5 \) and \( \theta = \frac{\pi}{128} \)**: \[ f_5\left(\frac{\pi}{128}\right) = \tan\left(\frac{\pi/128}{2}\right) \cdot (1 + \sec\left(\frac{\pi}{128}\right))(1 + \sec\left(\frac{\pi}{64}\right))(1 + \sec\left(\frac{\pi}{32}\right))(1 + \sec\left(\frac{\pi}{16}\right))(1 + \sec\left(\frac{\pi}{8}\right)) \] 2. **Calculate \( \tan\left(\frac{\pi}{256}\right) \)**: \[ \tan\left(\frac{\pi}{256}\right) \] 3. **Calculate \( \sec\left(\frac{\pi}{128}\right) \)**: \[ \sec\left(\frac{\pi}{128}\right) = \frac{1}{\cos\left(\frac{\pi}{128}\right)} \] 4. **Calculate \( \sec\left(\frac{\pi}{64}\right) \)**: \[ \sec\left(\frac{\pi}{64}\right) = \frac{1}{\cos\left(\frac{\pi}{64}\right)} \] 5. **Calculate \( \sec\left(\frac{\pi}{32}\right) \)**: \[ \sec\left(\frac{\pi}{32}\right) = \frac{1}{\cos\left(\frac{\pi}{32}\right)} \] 6. **Calculate \( \sec\left(\frac{\pi}{16}\right) \)** and \( \sec\left(\frac{\pi}{8}\right) \)**: \[ \sec\left(\frac{\pi}{16}\right) \text{ and } \sec\left(\frac{\pi}{8}\right) \text{ as before.} \] 7. **Combine the results**: \[ f_5\left(\frac{\pi}{128}\right) = \tan\left(\frac{\pi}{256}\right) \cdot (1 + \sec\left(\frac{\pi}{128}\right))(1 + \sec\left(\frac{\pi}{64}\right))(1 + \sec\left(\frac{\pi}{32}\right))(1 + \sec\left(\frac{\pi}{16}\right))(1 + \sec\left(\frac{\pi}{8}\right)) \] 8. **Final evaluation**: After calculating, we find that: \[ f_5\left(\frac{\pi}{128}\right) = 1 \] ### Final Answers: - \( f_2\left(\frac{\pi}{16}\right) = 1 \) - \( f_5\left(\frac{\pi}{128}\right) = 1 \)
Promotional Banner

Topper's Solved these Questions

  • ADVANCED TRIGONOMETRIC IDENTITIES

    LUCENT PUBLICATION|Exercise EXERCISE 13A|49 Videos
  • ALGEBRAIC IDENTITIES

    LUCENT PUBLICATION|Exercise Exercise - 1B|28 Videos

Similar Questions

Explore conceptually related problems

For a positive integer n f_(n)(theta)=((tan theta)/(2))(1+sec theta)(1+sec2 theta)(1+sec4 theta)...(1+sec2^(n)theta) ,then

The value of tan((theta)/(2))(1+sec theta)(1+sec2 theta)+(1+sec2^(2)theta)...(1+sec2^(n)theta) is

prove that : (tan 2^n theta)/(tan theta) = (1+sec 2theta) (1+ sec 2^2 theta) (1+sec 2^3 theta) … (1+ sec 2^n theta)

1+(tan^(2)theta)/((1+sec theta))=sec theta

Prove that (tan8 theta)/(tan theta)=(1+sec2 theta)(1+sec4 theta)(1+sec8 theta)

f_(n)(Theta)=(tan((Theta)/(2)))(1+sec(Theta))(1+sec(2Theta))......(1+sec(2^(n)Theta)

For a positive integer n , let f_n(theta)=(tantheta//2)(1+sectheta)(1+sec2theta)(1+sec4theta)...................(1+sec2^ntheta). Then (a)f_2(pi/(16))=1 (b) f_3(pi/(32))=1 (c)f_4(pi/(64))=1 (d) f_5(pi/(128))=1

Prove that (tan 8 theta)/(tan theta)=(1+ sec 2 theta)(1+ sec 4 theta)(1+ sec 8 theta)

LUCENT PUBLICATION-ADVANCED TRIGONOMETRIC IDENTITIES-EXERCISE 13A
  1. For positive integer n if f(n)(theta) = tan ""(theta)/(2) (1 + sec t...

    Text Solution

    |

  2. If p and q are two quantities such that p^(2) +q^(2) =1, then maximum...

    Text Solution

    |

  3. If theta is real then 3 - cos theta + cos (theta + (pi)/(3)) lies in t...

    Text Solution

    |

  4. If sinA=(1)/(sqrt(10))andsinB=(1)/(sqrt(5)), where A and B are positiv...

    Text Solution

    |

  5. If cos (theta - alpha) = a, cos (theta - beta) = b, then the value of ...

    Text Solution

    |

  6. A positive acute angle is divided into two parts whose tangents are 1/...

    Text Solution

    |

  7. In trianglePQR, angleR = (pi)/(2). If tan((P)/(2)) " and " tan ((Q)/...

    Text Solution

    |

  8. The value of (sin 55^(@) - cos 55^(@))/(sin10^(@) is

    Text Solution

    |

  9. The value of cos 15^(@) - sin 15^(@) is

    Text Solution

    |

  10. Minimum value of 27^(cos 2x) 81^( sin 2x) is

    Text Solution

    |

  11. 3 (sinx - cosx)^(4) + 6 (sinx + cosx)^(2) + 4(sin^(6)x + cos^(6)x) =

    Text Solution

    |

  12. If sin theta = sin 15^(@) + sin 45^(@), " where " 0^(@) lt theta lt ...

    Text Solution

    |

  13. If cos alpha + cos beta = 0 = sin alpha + sin beta, then value of cos...

    Text Solution

    |

  14. If A + B = 45^(@), " then " (cot A - 1) ( cot B - 1) is

    Text Solution

    |

  15. If alpha, beta in (0, (pi)/(2)), sin alpha = (4)/(5) " and " cos (alp...

    Text Solution

    |

  16. The value of tan 40^(@) + tan 20^(@) + sqrt(3) tan 20^(@) tan 40^(@) ...

    Text Solution

    |

  17. The value of cos 20^(@) + Cos 100^(@) + cos 140^(@) is

    Text Solution

    |

  18. If (-pi)/(2) < theta < (pi)/(2) " and " theta ne pm (pi)/(4), then th...

    Text Solution

    |

  19. If sin theta =3 sin ( theta + 2 alpha), then the value of tan (theta...

    Text Solution

    |

  20. If x=ycos""(2pi)/(3)=zcos""(4pi)/(3), then xy+yz+zx is equal to

    Text Solution

    |

  21. (cos 9^(@) + sin 9^(@))/(cos 9^(@) - sin 9^(@)) equals

    Text Solution

    |