Home
Class 14
MATHS
If cos (theta - alpha) = a, cos (theta -...

If `cos (theta - alpha) = a, cos (theta - beta) = b`, then the value of ` sin^(2) (alpha - beta) + 2ab cos (alpha - beta)` is

A

`a^(2) + b^(2)`

B

`a^(2) - b^(2)`

C

`b^(2) - a^(2)`

D

`-a^(2) - b^(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \sin^2(\alpha - \beta) + 2ab \cos(\alpha - \beta) \) given that \( \cos(\theta - \alpha) = a \) and \( \cos(\theta - \beta) = b \). ### Step 1: Express \( \sin^2(\alpha - \beta) \) Using the identity for sine, we can express \( \sin^2(\alpha - \beta) \) in terms of cosine: \[ \sin^2(\alpha - \beta) = 1 - \cos^2(\alpha - \beta) \] ### Step 2: Express \( \cos(\alpha - \beta) \) Using the cosine subtraction formula: \[ \cos(\alpha - \beta) = \cos(\alpha)\cos(\beta) + \sin(\alpha)\sin(\beta) \] ### Step 3: Find \( \sin(\theta - \alpha) \) and \( \sin(\theta - \beta) \) From the given equations: \[ \cos(\theta - \alpha) = a \implies \sin^2(\theta - \alpha) = 1 - a^2 \] \[ \cos(\theta - \beta) = b \implies \sin^2(\theta - \beta) = 1 - b^2 \] ### Step 4: Use the sine subtraction formula We can express \( \sin(\theta - \alpha) \) and \( \sin(\theta - \beta) \) as: \[ \sin(\theta - \alpha) = \sqrt{1 - a^2}, \quad \sin(\theta - \beta) = \sqrt{1 - b^2} \] ### Step 5: Substitute into the cosine formula Now substituting into the cosine formula: \[ \cos(\alpha - \beta) = \cos(\theta - \beta)\cos(\theta - \alpha) + \sin(\theta - \beta)\sin(\theta - \alpha) \] Substituting the values we have: \[ \cos(\alpha - \beta) = b \cdot a + \sqrt{1 - b^2} \cdot \sqrt{1 - a^2} \] ### Step 6: Substitute back into the original expression Now substituting \( \sin^2(\alpha - \beta) \) and \( 2ab \cos(\alpha - \beta) \) into the expression: \[ \sin^2(\alpha - \beta) + 2ab \cos(\alpha - \beta) = (1 - \cos^2(\alpha - \beta)) + 2ab(b \cdot a + \sqrt{1 - b^2} \cdot \sqrt{1 - a^2}) \] ### Step 7: Simplify the expression After substituting and simplifying, we will find that: \[ \sin^2(\alpha - \beta) + 2ab \cos(\alpha - \beta) = a^2 + b^2 \] ### Final Answer Thus, the value of \( \sin^2(\alpha - \beta) + 2ab \cos(\alpha - \beta) \) is: \[ \boxed{a^2 + b^2} \]
Promotional Banner

Topper's Solved these Questions

  • ADVANCED TRIGONOMETRIC IDENTITIES

    LUCENT PUBLICATION|Exercise EXERCISE 13A|49 Videos
  • ALGEBRAIC IDENTITIES

    LUCENT PUBLICATION|Exercise Exercise - 1B|28 Videos

Similar Questions

Explore conceptually related problems

If cos(theta-alpha)=a and cos(theta-beta)=b then the value of sin^(2)(alpha-beta)+2ab cos(alpha-beta)

If cos (theta -alpha) =a, sin (theta - beta) =b, then cos ^(2) (alpha - beta) + 2 ab sin (alpha - beta) is equal to

If cos (theta - alpha) = a and sin(theta - beta) = b (0 lt theta - alpha, theta - beta lt pi//2) , then prove that cos^(2) (alpha - beta) + 2ab sin (alpha - beta) = a^(2) + b^(2)

Eliminate theta between a = cos(theta - alpha) , b = sin(theta - beta) and prove that a^(2) -2ab sin(alpha - beta) + b^(2) = cos^(2)(alpha - beta) .

s(theta-alpha)=a and cos(theta-beta)=b, then sin^(2)(alpha-beta)+2ab cos(alpha-beta)=

sin(theta+alpha)=a sin(theta+beta)=b(0

It is given that cos(theta-alpha)=a, cos(theta-beta)=b What is sin^(2)(alpha-beta)+2abcos(alpha-beta) equal to ?

If cos 3 theta = alpha cos theta + beta cos ^(3) theta, then (alpha, beta) =

LUCENT PUBLICATION-ADVANCED TRIGONOMETRIC IDENTITIES-EXERCISE 13A
  1. If theta is real then 3 - cos theta + cos (theta + (pi)/(3)) lies in t...

    Text Solution

    |

  2. If sinA=(1)/(sqrt(10))andsinB=(1)/(sqrt(5)), where A and B are positiv...

    Text Solution

    |

  3. If cos (theta - alpha) = a, cos (theta - beta) = b, then the value of ...

    Text Solution

    |

  4. A positive acute angle is divided into two parts whose tangents are 1/...

    Text Solution

    |

  5. In trianglePQR, angleR = (pi)/(2). If tan((P)/(2)) " and " tan ((Q)/...

    Text Solution

    |

  6. The value of (sin 55^(@) - cos 55^(@))/(sin10^(@) is

    Text Solution

    |

  7. The value of cos 15^(@) - sin 15^(@) is

    Text Solution

    |

  8. Minimum value of 27^(cos 2x) 81^( sin 2x) is

    Text Solution

    |

  9. 3 (sinx - cosx)^(4) + 6 (sinx + cosx)^(2) + 4(sin^(6)x + cos^(6)x) =

    Text Solution

    |

  10. If sin theta = sin 15^(@) + sin 45^(@), " where " 0^(@) lt theta lt ...

    Text Solution

    |

  11. If cos alpha + cos beta = 0 = sin alpha + sin beta, then value of cos...

    Text Solution

    |

  12. If A + B = 45^(@), " then " (cot A - 1) ( cot B - 1) is

    Text Solution

    |

  13. If alpha, beta in (0, (pi)/(2)), sin alpha = (4)/(5) " and " cos (alp...

    Text Solution

    |

  14. The value of tan 40^(@) + tan 20^(@) + sqrt(3) tan 20^(@) tan 40^(@) ...

    Text Solution

    |

  15. The value of cos 20^(@) + Cos 100^(@) + cos 140^(@) is

    Text Solution

    |

  16. If (-pi)/(2) < theta < (pi)/(2) " and " theta ne pm (pi)/(4), then th...

    Text Solution

    |

  17. If sin theta =3 sin ( theta + 2 alpha), then the value of tan (theta...

    Text Solution

    |

  18. If x=ycos""(2pi)/(3)=zcos""(4pi)/(3), then xy+yz+zx is equal to

    Text Solution

    |

  19. (cos 9^(@) + sin 9^(@))/(cos 9^(@) - sin 9^(@)) equals

    Text Solution

    |

  20. The value of sin 50^(@) - sin 70^(@) + sin 10^(@) is

    Text Solution

    |