Home
Class 14
MATHS
In trianglePQR, angleR = (pi)/(2). If ...

In ` trianglePQR, angleR = (pi)/(2)`. If ` tan((P)/(2)) " and " tan ((Q)/(2))`are roots of equation, `ax^(2) + bx + c = 0`, then which of the following is true.

A

c = a + b

B

a = b + c

C

b = a + c

D

b = c

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we will use the properties of the roots of a quadratic equation and some trigonometric identities. ### Step 1: Understand the Problem We are given a triangle \( PQR \) where \( \angle R = \frac{\pi}{2} \) (90 degrees). The roots of the quadratic equation \( ax^2 + bx + c = 0 \) are \( \tan\left(\frac{P}{2}\right) \) and \( \tan\left(\frac{Q}{2}\right) \). ### Step 2: Use the Sum and Product of Roots For a quadratic equation \( ax^2 + bx + c = 0 \): - The sum of the roots \( \tan\left(\frac{P}{2}\right) + \tan\left(\frac{Q}{2}\right) = -\frac{b}{a} \) - The product of the roots \( \tan\left(\frac{P}{2}\right) \tan\left(\frac{Q}{2}\right) = \frac{c}{a} \) ### Step 3: Apply the Tangent Addition Formula Using the tangent addition formula: \[ \tan\left(\frac{P + Q}{2}\right) = \frac{\tan\left(\frac{P}{2}\right) + \tan\left(\frac{Q}{2}\right)}{1 - \tan\left(\frac{P}{2}\right) \tan\left(\frac{Q}{2}\right)} \] Since \( P + Q + R = \pi \) and \( R = \frac{\pi}{2} \), we have \( P + Q = \frac{\pi}{2} \). Thus: \[ \tan\left(\frac{P + Q}{2}\right) = \tan\left(\frac{\pi/2}{2}\right) = \tan\left(\frac{\pi}{4}\right) = 1 \] ### Step 4: Substitute into the Tangent Addition Formula Substituting into the formula: \[ 1 = \frac{\tan\left(\frac{P}{2}\right) + \tan\left(\frac{Q}{2}\right)}{1 - \tan\left(\frac{P}{2}\right) \tan\left(\frac{Q}{2}\right)} \] Cross-multiplying gives: \[ 1 - \tan\left(\frac{P}{2}\right) \tan\left(\frac{Q}{2}\right) = \tan\left(\frac{P}{2}\right) + \tan\left(\frac{Q}{2}\right) \] ### Step 5: Rearranging the Equation Rearranging gives: \[ 1 = \tan\left(\frac{P}{2}\right) + \tan\left(\frac{Q}{2}\right) + \tan\left(\frac{P}{2}\right) \tan\left(\frac{Q}{2}\right) \] This can be expressed in terms of the coefficients \( a, b, c \): \[ 1 = -\frac{b}{a} + \frac{c}{a} \] Multiplying through by \( a \): \[ a = -b + c \] Rearranging gives: \[ a + b = c \] ### Conclusion Thus, the correct statement is: \[ a + b = c \] ### Final Answer The correct option is **option 1: \( a + b = c \)**.
Promotional Banner

Topper's Solved these Questions

  • ADVANCED TRIGONOMETRIC IDENTITIES

    LUCENT PUBLICATION|Exercise EXERCISE 13A|49 Videos
  • ALGEBRAIC IDENTITIES

    LUCENT PUBLICATION|Exercise Exercise - 1B|28 Videos

Similar Questions

Explore conceptually related problems

In a triangle PQR, angleR = pi //2 . If tan (P/2) and tan (Q/2) are the roots of the equations ax^(2) + bx + c = 0 where a ne 0 , then

2x^(2) + 3x - alpha - 0 " has roots "-2 and beta " while the equation "x^(2) - 3mx + 2m^(2) = 0 " has both roots positive, where " alpha gt 0 and beta gt 0. Delta PQR, angleR=pi/2. " If than "(P/2) and tan (Q/2) " are the roots of the equation " ax^(2) + bx + c = 0 , then which one of the following is correct ?

if the roots of the equation x^(2)-bx+c=0 differ by 2 then which of the following is true

If sintheta and costheta are roots of equation ax^(2) + bx + c =0 , then

In Delta PQR,/_R=(pi)/(4),tan((P)/(3)),tan((Q)/(3)) are the roots of the equation ax^(2)+bx+c=0, then

LUCENT PUBLICATION-ADVANCED TRIGONOMETRIC IDENTITIES-EXERCISE 13A
  1. If cos (theta - alpha) = a, cos (theta - beta) = b, then the value of ...

    Text Solution

    |

  2. A positive acute angle is divided into two parts whose tangents are 1/...

    Text Solution

    |

  3. In trianglePQR, angleR = (pi)/(2). If tan((P)/(2)) " and " tan ((Q)/...

    Text Solution

    |

  4. The value of (sin 55^(@) - cos 55^(@))/(sin10^(@) is

    Text Solution

    |

  5. The value of cos 15^(@) - sin 15^(@) is

    Text Solution

    |

  6. Minimum value of 27^(cos 2x) 81^( sin 2x) is

    Text Solution

    |

  7. 3 (sinx - cosx)^(4) + 6 (sinx + cosx)^(2) + 4(sin^(6)x + cos^(6)x) =

    Text Solution

    |

  8. If sin theta = sin 15^(@) + sin 45^(@), " where " 0^(@) lt theta lt ...

    Text Solution

    |

  9. If cos alpha + cos beta = 0 = sin alpha + sin beta, then value of cos...

    Text Solution

    |

  10. If A + B = 45^(@), " then " (cot A - 1) ( cot B - 1) is

    Text Solution

    |

  11. If alpha, beta in (0, (pi)/(2)), sin alpha = (4)/(5) " and " cos (alp...

    Text Solution

    |

  12. The value of tan 40^(@) + tan 20^(@) + sqrt(3) tan 20^(@) tan 40^(@) ...

    Text Solution

    |

  13. The value of cos 20^(@) + Cos 100^(@) + cos 140^(@) is

    Text Solution

    |

  14. If (-pi)/(2) < theta < (pi)/(2) " and " theta ne pm (pi)/(4), then th...

    Text Solution

    |

  15. If sin theta =3 sin ( theta + 2 alpha), then the value of tan (theta...

    Text Solution

    |

  16. If x=ycos""(2pi)/(3)=zcos""(4pi)/(3), then xy+yz+zx is equal to

    Text Solution

    |

  17. (cos 9^(@) + sin 9^(@))/(cos 9^(@) - sin 9^(@)) equals

    Text Solution

    |

  18. The value of sin 50^(@) - sin 70^(@) + sin 10^(@) is

    Text Solution

    |

  19. Maximum value of 3 cos theta + 4 sin theta is

    Text Solution

    |

  20. If tanalpha=(m)/(m+1)andtan beta=(1)/(2m+1), then (alpha+beta)=?

    Text Solution

    |