Home
Class 14
MATHS
If (-pi)/(2) < theta < (pi)/(2) " and "...

If ` (-pi)/(2) < theta < (pi)/(2) " and " theta ne pm (pi)/(4),` then the value of ` cot ((pi)/(4) + theta) cot ((pi)/(4) - theta)` is

A

0

B

`-1`

C

1

D

`-2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression \( \cot\left(\frac{\pi}{4} + \theta\right) \cot\left(\frac{\pi}{4} - \theta\right) \). ### Step 1: Use the cotangent addition and subtraction formulas We can use the formulas for cotangent of sums and differences: \[ \cot(a + b) = \frac{\cot a \cot b - 1}{\cot a + \cot b} \] \[ \cot(a - b) = \frac{\cot a \cot b + 1}{\cot a - \cot b} \] In our case, let \( a = \frac{\pi}{4} \) and \( b = \theta \). ### Step 2: Calculate \( \cot\left(\frac{\pi}{4} + \theta\right) \) Using the formula for \( \cot(a + b) \): \[ \cot\left(\frac{\pi}{4} + \theta\right) = \frac{\cot\left(\frac{\pi}{4}\right) \cot(\theta) - 1}{\cot\left(\frac{\pi}{4}\right) + \cot(\theta)} \] Since \( \cot\left(\frac{\pi}{4}\right) = 1 \): \[ \cot\left(\frac{\pi}{4} + \theta\right) = \frac{1 \cdot \cot(\theta) - 1}{1 + \cot(\theta)} = \frac{\cot(\theta) - 1}{1 + \cot(\theta)} \] ### Step 3: Calculate \( \cot\left(\frac{\pi}{4} - \theta\right) \) Using the formula for \( \cot(a - b) \): \[ \cot\left(\frac{\pi}{4} - \theta\right) = \frac{\cot\left(\frac{\pi}{4}\right) \cot(\theta) + 1}{\cot\left(\frac{\pi}{4}\right) - \cot(\theta)} \] Again, since \( \cot\left(\frac{\pi}{4}\right) = 1 \): \[ \cot\left(\frac{\pi}{4} - \theta\right) = \frac{1 \cdot \cot(\theta) + 1}{1 - \cot(\theta)} = \frac{\cot(\theta) + 1}{1 - \cot(\theta)} \] ### Step 4: Multiply the two cotangent values Now we multiply the two results: \[ \cot\left(\frac{\pi}{4} + \theta\right) \cot\left(\frac{\pi}{4} - \theta\right) = \left(\frac{\cot(\theta) - 1}{1 + \cot(\theta)}\right) \left(\frac{\cot(\theta) + 1}{1 - \cot(\theta)}\right) \] ### Step 5: Simplify the expression Using the difference of squares: \[ = \frac{(\cot(\theta) - 1)(\cot(\theta) + 1)}{(1 + \cot(\theta))(1 - \cot(\theta))} = \frac{\cot^2(\theta) - 1}{1 - \cot^2(\theta)} \] Recognizing that \( \cot^2(\theta) - 1 = -\sin^2(\theta) \) and \( 1 - \cot^2(\theta) = \sin^2(\theta) \): \[ = -1 \] ### Final Answer Thus, the value of \( \cot\left(\frac{\pi}{4} + \theta\right) \cot\left(\frac{\pi}{4} - \theta\right) \) is \( -1 \).
Promotional Banner

Topper's Solved these Questions

  • ADVANCED TRIGONOMETRIC IDENTITIES

    LUCENT PUBLICATION|Exercise EXERCISE 13A|49 Videos
  • ALGEBRAIC IDENTITIES

    LUCENT PUBLICATION|Exercise Exercise - 1B|28 Videos

Similar Questions

Explore conceptually related problems

The function f(x)=tan^(-1)(sin x+cos x) is an increasing function in (-(pi)/(2),(pi)/(4))(b)(0,(pi)/(2))(-(pi)/(2),(pi)/(2))(d)((pi)/(4),(pi)/(2))

tan^(-1)[(cos x)/(1+sin x)] is equal to (pi)/(4)-(x)/(2), for x in(-(pi)/(2),(3 pi)/(2))(pi)/(4)-(x)/(2), for x in(-(pi)/(2),(pi)/(2))(pi)/(4)-(x)/(2), for x in(-(pi)/(2),(pi)/(2))(pi)/(4)-(x)/(2), for x in(-(3 pi)/(2),(pi)/(2))

f(x),={(k cos x)/(pi-2x),quad if x!=(pi)/(2) and 3,quad if x=(pi)/(2) at x,=(pi)/(2)

f(x)={((5^(cosx)-1)/((pi)/(2)-x)",", x ne (pi)/(2)), (log 5"," , x =(pi)/(2)):} at x =(pi)/(2) is

f(x) = {{:((k cosx )/((pi - 2x)"," if x ne (pi)/(2))),(3"," if x = (pi)/(2)):} at x = (pi)/(2) .

The argument of (1-i)/(1+i) is (pi)/(2) b.(pi)/(2) c.(3 pi)/(2)d .(5 pi)/(2)

If y=sin^(-1)(sin x),-(pi)/(2)<=x<=(pi)/(2). Then, write the value of (dy)/(dx) for x in(-(pi)/(2),(pi)/(2))

f (x) = {(cos x) / ((pi) / (2) -x), x! = (pi) / (2) 1, x = (pi) / (2)

f (x) = {{:( tan^(-1) x , "," , |x| lt (pi)/(2)) , ((pi)/(2) - |x| , "," , |x| ge (pi)/(2)):} then

Let f(x)=(k cos x)/(pi-2x) if x!=(pi)/(2) and f(x=(pi)/(2)) if x=(pi)/(2) then find the value of k if lim_(x rarr(pi)/(2))f(x)=f((pi)/(2))

LUCENT PUBLICATION-ADVANCED TRIGONOMETRIC IDENTITIES-EXERCISE 13A
  1. The value of tan 40^(@) + tan 20^(@) + sqrt(3) tan 20^(@) tan 40^(@) ...

    Text Solution

    |

  2. The value of cos 20^(@) + Cos 100^(@) + cos 140^(@) is

    Text Solution

    |

  3. If (-pi)/(2) < theta < (pi)/(2) " and " theta ne pm (pi)/(4), then th...

    Text Solution

    |

  4. If sin theta =3 sin ( theta + 2 alpha), then the value of tan (theta...

    Text Solution

    |

  5. If x=ycos""(2pi)/(3)=zcos""(4pi)/(3), then xy+yz+zx is equal to

    Text Solution

    |

  6. (cos 9^(@) + sin 9^(@))/(cos 9^(@) - sin 9^(@)) equals

    Text Solution

    |

  7. The value of sin 50^(@) - sin 70^(@) + sin 10^(@) is

    Text Solution

    |

  8. Maximum value of 3 cos theta + 4 sin theta is

    Text Solution

    |

  9. If tanalpha=(m)/(m+1)andtan beta=(1)/(2m+1), then (alpha+beta)=?

    Text Solution

    |

  10. (sin(x+y))/(sin(x-y))=(a+b)/(a-b), then (tanx)/(tany)=?

    Text Solution

    |

  11. If tan alpha = (5)/(6) tan beta = (1)/(11) then the value of alpha +...

    Text Solution

    |

  12. Maximum value of sin (x + (pi)/(6)) + cos (x + (pi)/(6)) is

    Text Solution

    |

  13. If cos(alpha+beta)=(4)/(5) and sin(alpha-beta)=(5)/(13) , where alpha ...

    Text Solution

    |

  14. If A = sin^(2)x + cos^(4)x, where x in a real number

    Text Solution

    |

  15. If x = tan 15^(@), y = cosec 75^(@) " and " z =4 sin 18^(@), then

    Text Solution

    |

  16. If sin theta =3 sin ( theta + 2 alpha), then the value of tan (theta...

    Text Solution

    |

  17. Expression (1)/(cos 290^(@)) + (1)/(sqrt(3) sin 250^(@)) equals

    Text Solution

    |

  18. Find the value of:(1+cos""(pi)/(8))(1+cos""(3pi)/(8))(1+cos""(5pi)/(8)...

    Text Solution

    |

  19. Prove that cos^(4)pi/8+cos^(4)(3pi)/(8)+cos^(4)(5pi)/8+cos^(4)(7pi)/...

    Text Solution

    |

  20. cos""(pi)/(15).cos""(2pi)/(15).cos""(4pi)/(15).cos""(8pi)/(15) is equa...

    Text Solution

    |