Home
Class 14
MATHS
If x = tan 15^(@), y = cosec 75^(@) " a...

If ` x = tan 15^(@), y = cosec 75^(@) " and " z =4 sin 18^(@),` then

A

`x lt y lt z`

B

` y lt z lt x`

C

`z lt x lt y`

D

`x lt z lt y`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the values of \( x \), \( y \), and \( z \) based on the given expressions and then compare them. ### Step 1: Calculate \( x = \tan 15^\circ \) We can express \( 15^\circ \) as \( 60^\circ - 45^\circ \). Using the tangent subtraction formula: \[ \tan(A - B) = \frac{\tan A - \tan B}{1 + \tan A \tan B} \] Here, \( A = 60^\circ \) and \( B = 45^\circ \): \[ \tan 60^\circ = \sqrt{3}, \quad \tan 45^\circ = 1 \] Substituting these values into the formula: \[ \tan 15^\circ = \frac{\tan 60^\circ - \tan 45^\circ}{1 + \tan 60^\circ \tan 45^\circ} = \frac{\sqrt{3} - 1}{1 + \sqrt{3}} \] To simplify, multiply the numerator and denominator by the conjugate of the denominator: \[ \tan 15^\circ = \frac{(\sqrt{3} - 1)(1 - \sqrt{3})}{(1 + \sqrt{3})(1 - \sqrt{3})} = \frac{3 - 2\sqrt{3} + 1}{1 - 3} = \frac{4 - 2\sqrt{3}}{-2} = 2 - \sqrt{3} \] ### Step 2: Calculate \( y = \csc 75^\circ \) Using the identity \( \csc \theta = \frac{1}{\sin \theta} \): \[ \csc 75^\circ = \frac{1}{\sin 75^\circ} \] We can express \( 75^\circ \) as \( 45^\circ + 30^\circ \): \[ \sin(45^\circ + 30^\circ) = \sin 45^\circ \cos 30^\circ + \cos 45^\circ \sin 30^\circ \] Substituting the values: \[ \sin 75^\circ = \frac{\sqrt{2}}{2} \cdot \frac{\sqrt{3}}{2} + \frac{\sqrt{2}}{2} \cdot \frac{1}{2} = \frac{\sqrt{6} + \sqrt{2}}{4} \] Thus, \[ y = \csc 75^\circ = \frac{4}{\sqrt{6} + \sqrt{2}} \] To rationalize the denominator: \[ y = \frac{4(\sqrt{6} - \sqrt{2})}{6 - 2} = \sqrt{6} - \sqrt{2} \] ### Step 3: Calculate \( z = 4 \sin 18^\circ \) Using the known value \( \sin 18^\circ = \frac{\sqrt{5} - 1}{4} \): \[ z = 4 \cdot \frac{\sqrt{5} - 1}{4} = \sqrt{5} - 1 \] ### Step 4: Compare \( x \), \( y \), and \( z \) Now we have: - \( x = 2 - \sqrt{3} \) - \( y = \sqrt{6} - \sqrt{2} \) - \( z = \sqrt{5} - 1 \) ### Step 5: Approximate values - \( \sqrt{3} \approx 1.732 \) so \( x \approx 2 - 1.732 = 0.268 \) - \( \sqrt{6} \approx 2.449 \) and \( \sqrt{2} \approx 1.414 \) so \( y \approx 2.449 - 1.414 = 1.035 \) - \( \sqrt{5} \approx 2.236 \) so \( z \approx 2.236 - 1 = 1.236 \) ### Conclusion From the approximations: \[ x \approx 0.268 < y \approx 1.035 < z \approx 1.236 \] Thus, the correct order is \( x < y < z \). ### Final Answer The correct option is \( A: x < y < z \).
Promotional Banner

Topper's Solved these Questions

  • ADVANCED TRIGONOMETRIC IDENTITIES

    LUCENT PUBLICATION|Exercise EXERCISE 13A|49 Videos
  • ALGEBRAIC IDENTITIES

    LUCENT PUBLICATION|Exercise Exercise - 1B|28 Videos

Similar Questions

Explore conceptually related problems

If x=tan15^(@),y=cosec75^(@),z=4sin18^(@)

Calculate the value of (i) sin 15^(@) " "(ii) cos 15^(@)" "(iii) tan 15^(@) (iv) sin 75^(@) " "(v) cos 75^(@) " "(vi) tan 75^(@)

If cos x = tan y, cos y = tan z and cos z = tan x, prove that sin x = sin y = sin z = sin18 ^ (@)

If cos x=tan y,cot y=tan z and cot z=tan x, then sin x=

Without using the trigonometric tables, evaluate the following : (11)/(7) (sin 70^(@))/(cos 20^(@)) - (4)/(7) (cos 53^(@) "cosec" 37^(@))/(tan 15^(@) tan 35^(@) tan 55^(@) tan 75^(@))

If 4 sin^(2) x + cosec^(2)x, a , sin^(2)y+4 cosec^(2)y are in AP, then minimum value of (2a) is

LUCENT PUBLICATION-ADVANCED TRIGONOMETRIC IDENTITIES-EXERCISE 13A
  1. If cos(alpha+beta)=(4)/(5) and sin(alpha-beta)=(5)/(13) , where alpha ...

    Text Solution

    |

  2. If A = sin^(2)x + cos^(4)x, where x in a real number

    Text Solution

    |

  3. If x = tan 15^(@), y = cosec 75^(@) " and " z =4 sin 18^(@), then

    Text Solution

    |

  4. If sin theta =3 sin ( theta + 2 alpha), then the value of tan (theta...

    Text Solution

    |

  5. Expression (1)/(cos 290^(@)) + (1)/(sqrt(3) sin 250^(@)) equals

    Text Solution

    |

  6. Find the value of:(1+cos""(pi)/(8))(1+cos""(3pi)/(8))(1+cos""(5pi)/(8)...

    Text Solution

    |

  7. Prove that cos^(4)pi/8+cos^(4)(3pi)/(8)+cos^(4)(5pi)/8+cos^(4)(7pi)/...

    Text Solution

    |

  8. cos""(pi)/(15).cos""(2pi)/(15).cos""(4pi)/(15).cos""(8pi)/(15) is equa...

    Text Solution

    |

  9. (2)/(sqrt(2) + sqrt(2) + sqrt(2+2 cos 4x)) equals

    Text Solution

    |

  10. The value of cos 15^(@) cos 7 ((1)/(2))^(@)sin 7 ((1)/(2))^(@) is

    Text Solution

    |

  11. (cot x - tan x)/(cot 2x) equals

    Text Solution

    |

  12. tan 67 (1^(@))/(2) + cot 67 (1^(@))/(2) equals

    Text Solution

    |

  13. If sin 4 A - cos 2A = cos 4A - sin 2A, (0 lt A lt (pi)/(4)) then the ...

    Text Solution

    |

  14. (3-4 cos 2theta + cos 4 theta) equals

    Text Solution

    |

  15. If8 cos 2 theta + 8 sec 2theta = 65, 0 lt theta lt (pi)/(2) then the v...

    Text Solution

    |

  16. cos A cos 2A cos4 A…… cos2^(n-1) A equals

    Text Solution

    |

  17. Prove that tan 9^circ - tan 27^circ -tan 63^circ + tan 81^circ = 4.

    Text Solution

    |

  18. (cos theta)/(1 + sin theta) equals

    Text Solution

    |

  19. Let alpha, beta be such that pi lt alpha -beta lt 3 pi. If sin alpha...

    Text Solution

    |

  20. cos^(2)(A-B)+cos^(2)B-2cos(A-B).cosA.cosB=?

    Text Solution

    |