Home
Class 14
MATHS
Expression (1)/(cos 290^(@)) + (1)/(sqrt...

Expression `(1)/(cos 290^(@)) + (1)/(sqrt(3) sin 250^(@))` equals

A

`(sqrt(3))/(4)`

B

`(4)/(sqrt(3))`

C

`(2)/(sqrt(3))`

D

`(sqrt(3))/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \(\frac{1}{\cos 290^\circ} + \frac{1}{\sqrt{3} \sin 250^\circ}\), we will follow these steps: ### Step 1: Simplify the Trigonometric Functions First, we simplify \(\cos 290^\circ\) and \(\sin 250^\circ\). \[ \cos 290^\circ = \cos(270^\circ + 20^\circ) = -\sin 20^\circ \] \[ \sin 250^\circ = \sin(270^\circ - 20^\circ) = -\cos 20^\circ \] ### Step 2: Substitute the Values Now substitute these values back into the expression: \[ \frac{1}{\cos 290^\circ} + \frac{1}{\sqrt{3} \sin 250^\circ} = \frac{1}{-\sin 20^\circ} + \frac{1}{\sqrt{3} (-\cos 20^\circ)} \] This simplifies to: \[ -\frac{1}{\sin 20^\circ} - \frac{1}{\sqrt{3} \cos 20^\circ} \] ### Step 3: Find a Common Denominator The common denominator for the two fractions is \(\sqrt{3} \sin 20^\circ \cos 20^\circ\). Thus, we rewrite the expression: \[ -\frac{\sqrt{3} \cos 20^\circ + \sin 20^\circ}{\sqrt{3} \sin 20^\circ \cos 20^\circ} \] ### Step 4: Factor the Numerator Now, we can factor the numerator: \[ -\left(\sqrt{3} \cos 20^\circ + \sin 20^\circ\right) \] ### Step 5: Use the Sine Difference Identity We can recognize that \(\sqrt{3} \cos 20^\circ + \sin 20^\circ\) can be expressed using the sine of a difference: \[ \sqrt{3} \cos 20^\circ + \sin 20^\circ = 2 \left(\frac{\sqrt{3}}{2} \cos 20^\circ + \frac{1}{2} \sin 20^\circ\right) = 2 \sin(60^\circ + 20^\circ) = 2 \sin 80^\circ \] ### Step 6: Substitute Back Now substituting this back into our expression gives: \[ -\frac{2 \sin 80^\circ}{\sqrt{3} \sin 20^\circ \cos 20^\circ} \] ### Step 7: Use the Double Angle Formula Using the double angle formula for sine, \(\sin 2a = 2 \sin a \cos a\): \[ \sin 20^\circ \cos 20^\circ = \frac{1}{2} \sin 40^\circ \] Thus, we have: \[ -\frac{2 \sin 80^\circ}{\sqrt{3} \cdot \frac{1}{2} \sin 40^\circ} = -\frac{4 \sin 80^\circ}{\sqrt{3} \sin 40^\circ} \] ### Step 8: Final Simplification Since \(\sin 80^\circ = \cos 10^\circ\) and \(\sin 40^\circ = \cos 50^\circ\): \[ -\frac{4 \cos 10^\circ}{\sqrt{3} \cos 50^\circ} \] ### Conclusion Thus, the final expression simplifies to: \[ -\frac{4 \cos 10^\circ}{\sqrt{3} \cos 50^\circ} \]
Promotional Banner

Topper's Solved these Questions

  • ADVANCED TRIGONOMETRIC IDENTITIES

    LUCENT PUBLICATION|Exercise EXERCISE 13A|49 Videos
  • ALGEBRAIC IDENTITIES

    LUCENT PUBLICATION|Exercise Exercise - 1B|28 Videos

Similar Questions

Explore conceptually related problems

(1)/(cos290^(@))+(1)/(sqrt(3)sin250^(@)) is equal to

(1)/(cos290^(@)+)(1)/(sqrt(3)sin250^(@))=

(1)/(cos290^(@))+(1)/(sqrt(3)sin250^(@))=

Find the value of expression (1)/(cos290^(@))+(1)/(sqrt(3)sin250^(@))

The value of (1)/(cos290^(@))+(1)/(sqrt(3)sin250^(@)) is

The greatest integer less than or equal to (1)/(cos290^(@))+(1)/(sqrt(3)sin250^(@)) is

The value of (1)/(cos290^(@))+(1)/(sqrt3sin250^(@)) is equal to

If (1)/(cos 290^(@))+(1)/(sqrt(3)sin 250^(@))=lambda , then the value of 9 lambda^(4)+81 lambda^(2)+97 must be

LUCENT PUBLICATION-ADVANCED TRIGONOMETRIC IDENTITIES-EXERCISE 13A
  1. If x = tan 15^(@), y = cosec 75^(@) " and " z =4 sin 18^(@), then

    Text Solution

    |

  2. If sin theta =3 sin ( theta + 2 alpha), then the value of tan (theta...

    Text Solution

    |

  3. Expression (1)/(cos 290^(@)) + (1)/(sqrt(3) sin 250^(@)) equals

    Text Solution

    |

  4. Find the value of:(1+cos""(pi)/(8))(1+cos""(3pi)/(8))(1+cos""(5pi)/(8)...

    Text Solution

    |

  5. Prove that cos^(4)pi/8+cos^(4)(3pi)/(8)+cos^(4)(5pi)/8+cos^(4)(7pi)/...

    Text Solution

    |

  6. cos""(pi)/(15).cos""(2pi)/(15).cos""(4pi)/(15).cos""(8pi)/(15) is equa...

    Text Solution

    |

  7. (2)/(sqrt(2) + sqrt(2) + sqrt(2+2 cos 4x)) equals

    Text Solution

    |

  8. The value of cos 15^(@) cos 7 ((1)/(2))^(@)sin 7 ((1)/(2))^(@) is

    Text Solution

    |

  9. (cot x - tan x)/(cot 2x) equals

    Text Solution

    |

  10. tan 67 (1^(@))/(2) + cot 67 (1^(@))/(2) equals

    Text Solution

    |

  11. If sin 4 A - cos 2A = cos 4A - sin 2A, (0 lt A lt (pi)/(4)) then the ...

    Text Solution

    |

  12. (3-4 cos 2theta + cos 4 theta) equals

    Text Solution

    |

  13. If8 cos 2 theta + 8 sec 2theta = 65, 0 lt theta lt (pi)/(2) then the v...

    Text Solution

    |

  14. cos A cos 2A cos4 A…… cos2^(n-1) A equals

    Text Solution

    |

  15. Prove that tan 9^circ - tan 27^circ -tan 63^circ + tan 81^circ = 4.

    Text Solution

    |

  16. (cos theta)/(1 + sin theta) equals

    Text Solution

    |

  17. Let alpha, beta be such that pi lt alpha -beta lt 3 pi. If sin alpha...

    Text Solution

    |

  18. cos^(2)(A-B)+cos^(2)B-2cos(A-B).cosA.cosB=?

    Text Solution

    |

  19. cos^(2)""(pi)/(16)+cos^(2)""(3pi)/(16)+cos^(2)""(5pi)/(16)+cos^(2)""(7...

    Text Solution

    |

  20. If sin theta - cos theta = (sqrt(3)-1)/(2), " then " theta equals

    Text Solution

    |