Home
Class 14
MATHS
(2)/(sqrt(2) + sqrt(2) + sqrt(2+2 cos 4x...

`(2)/(sqrt(2) + sqrt(2) + sqrt(2+2 cos 4x))` equals

A

`sec"" (x)/(2)`

B

`sec x`

C

`cosec x`

D

1

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \frac{2}{\sqrt{2} + \sqrt{2} + \sqrt{2 + 2 \cos 4x}} \), we will simplify the denominator step by step. ### Step 1: Simplify the denominator The denominator is \( \sqrt{2} + \sqrt{2} + \sqrt{2 + 2 \cos 4x} \). We can combine the first two terms: \[ \sqrt{2} + \sqrt{2} = 2\sqrt{2} \] So, we rewrite the denominator as: \[ 2\sqrt{2} + \sqrt{2 + 2 \cos 4x} \] ### Step 2: Simplify \( \sqrt{2 + 2 \cos 4x} \) We can factor out a 2 from the expression inside the square root: \[ \sqrt{2 + 2 \cos 4x} = \sqrt{2(1 + \cos 4x)} = \sqrt{2} \sqrt{1 + \cos 4x} \] Using the trigonometric identity \( 1 + \cos \theta = 2 \cos^2 \left(\frac{\theta}{2}\right) \), we have: \[ 1 + \cos 4x = 2 \cos^2(2x) \] Thus, \[ \sqrt{1 + \cos 4x} = \sqrt{2 \cos^2(2x)} = \sqrt{2} \cos(2x) \] So, \[ \sqrt{2 + 2 \cos 4x} = \sqrt{2} \cdot \sqrt{2} \cos(2x) = 2 \cos(2x) \] ### Step 3: Substitute back into the denominator Now substituting back into the denominator: \[ 2\sqrt{2} + 2\cos(2x) \] We can factor out a 2: \[ 2(\sqrt{2} + \cos(2x)) \] ### Step 4: Rewrite the entire expression Now we can rewrite the original expression: \[ \frac{2}{2(\sqrt{2} + \cos(2x))} = \frac{1}{\sqrt{2} + \cos(2x)} \] ### Final Result Thus, the simplified expression is: \[ \frac{1}{\sqrt{2} + \cos(2x)} \] ---
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • ADVANCED TRIGONOMETRIC IDENTITIES

    LUCENT PUBLICATION|Exercise EXERCISE 13A|49 Videos
  • ALGEBRAIC IDENTITIES

    LUCENT PUBLICATION|Exercise Exercise - 1B|28 Videos

Similar Questions

Explore conceptually related problems

(2)/(sqrt(2+sqrt(2+sqrt(2+2cos4x))))

sqrt(2+sqrt(2+2cos4 theta))

Knowledge Check

  • lim_(x to 0) (sin^(2) x)/(sqrt2 - sqrt(1+cos x)) equals

    A
    `4sqrt2`
    B
    `sqrt2`
    C
    `2 sqrt2`
    D
    4
  • Simplest form of 2/sqrt(2+sqrt(2+ sqrt(2+2 cos 4x))) is

    A
    `sec x/2`
    B
    sec x
    C
    cosec X
    D
    1
  • What is sqrt(2+sqrt(2+sqrt(2+2cos4A))) equal to ?

    A
    cosA
    B
    cos(2A)
    C
    `2cos(A//2)`
    D
    `sqrt(2cosA)`
  • Similar Questions

    Explore conceptually related problems

    sec x=(2)/(sqrt(2+(sqrt(2+2cos4x))))

    If pi<2 theta<(3 pi)/(2). then sqrt(2+sqrt(2+2cos4 theta)) is equal to

    (sqrt(8)-sqrt(4)-sqrt(2)) equals :

    sqrt(2sqrt(2sqrt(2sqrt(2)sqrt2))) equal is :

    (4sqrt(3))/(2-sqrt(2)) -30/(4sqrt(3) - sqrt(18)) - sqrt(18)/(3-2sqrt(3)) equals