Home
Class 14
MATHS
(2)/(sqrt(2) + sqrt(2) + sqrt(2+2 cos 4x...

`(2)/(sqrt(2) + sqrt(2) + sqrt(2+2 cos 4x))` equals

A

`sec"" (x)/(2)`

B

`sec x`

C

`cosec x`

D

1

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \frac{2}{\sqrt{2} + \sqrt{2} + \sqrt{2 + 2 \cos 4x}} \), we will simplify the denominator step by step. ### Step 1: Simplify the denominator The denominator is \( \sqrt{2} + \sqrt{2} + \sqrt{2 + 2 \cos 4x} \). We can combine the first two terms: \[ \sqrt{2} + \sqrt{2} = 2\sqrt{2} \] So, we rewrite the denominator as: \[ 2\sqrt{2} + \sqrt{2 + 2 \cos 4x} \] ### Step 2: Simplify \( \sqrt{2 + 2 \cos 4x} \) We can factor out a 2 from the expression inside the square root: \[ \sqrt{2 + 2 \cos 4x} = \sqrt{2(1 + \cos 4x)} = \sqrt{2} \sqrt{1 + \cos 4x} \] Using the trigonometric identity \( 1 + \cos \theta = 2 \cos^2 \left(\frac{\theta}{2}\right) \), we have: \[ 1 + \cos 4x = 2 \cos^2(2x) \] Thus, \[ \sqrt{1 + \cos 4x} = \sqrt{2 \cos^2(2x)} = \sqrt{2} \cos(2x) \] So, \[ \sqrt{2 + 2 \cos 4x} = \sqrt{2} \cdot \sqrt{2} \cos(2x) = 2 \cos(2x) \] ### Step 3: Substitute back into the denominator Now substituting back into the denominator: \[ 2\sqrt{2} + 2\cos(2x) \] We can factor out a 2: \[ 2(\sqrt{2} + \cos(2x)) \] ### Step 4: Rewrite the entire expression Now we can rewrite the original expression: \[ \frac{2}{2(\sqrt{2} + \cos(2x))} = \frac{1}{\sqrt{2} + \cos(2x)} \] ### Final Result Thus, the simplified expression is: \[ \frac{1}{\sqrt{2} + \cos(2x)} \] ---
Promotional Banner

Topper's Solved these Questions

  • ADVANCED TRIGONOMETRIC IDENTITIES

    LUCENT PUBLICATION|Exercise EXERCISE 13A|49 Videos
  • ALGEBRAIC IDENTITIES

    LUCENT PUBLICATION|Exercise Exercise - 1B|28 Videos

Similar Questions

Explore conceptually related problems

(2)/(sqrt(2+sqrt(2+sqrt(2+2cos4x))))

lim_(x to 0) (sin^(2) x)/(sqrt2 - sqrt(1+cos x)) equals

sqrt(2+sqrt(2+2cos4 theta))

What is sqrt(2+sqrt(2+sqrt(2+2cos4A))) equal to ?

sec x=(2)/(sqrt(2+(sqrt(2+2cos4x))))

If pi<2 theta<(3 pi)/(2). then sqrt(2+sqrt(2+2cos4 theta)) is equal to

LUCENT PUBLICATION-ADVANCED TRIGONOMETRIC IDENTITIES-EXERCISE 13A
  1. If sin theta =3 sin ( theta + 2 alpha), then the value of tan (theta...

    Text Solution

    |

  2. Expression (1)/(cos 290^(@)) + (1)/(sqrt(3) sin 250^(@)) equals

    Text Solution

    |

  3. Find the value of:(1+cos""(pi)/(8))(1+cos""(3pi)/(8))(1+cos""(5pi)/(8)...

    Text Solution

    |

  4. Prove that cos^(4)pi/8+cos^(4)(3pi)/(8)+cos^(4)(5pi)/8+cos^(4)(7pi)/...

    Text Solution

    |

  5. cos""(pi)/(15).cos""(2pi)/(15).cos""(4pi)/(15).cos""(8pi)/(15) is equa...

    Text Solution

    |

  6. (2)/(sqrt(2) + sqrt(2) + sqrt(2+2 cos 4x)) equals

    Text Solution

    |

  7. The value of cos 15^(@) cos 7 ((1)/(2))^(@)sin 7 ((1)/(2))^(@) is

    Text Solution

    |

  8. (cot x - tan x)/(cot 2x) equals

    Text Solution

    |

  9. tan 67 (1^(@))/(2) + cot 67 (1^(@))/(2) equals

    Text Solution

    |

  10. If sin 4 A - cos 2A = cos 4A - sin 2A, (0 lt A lt (pi)/(4)) then the ...

    Text Solution

    |

  11. (3-4 cos 2theta + cos 4 theta) equals

    Text Solution

    |

  12. If8 cos 2 theta + 8 sec 2theta = 65, 0 lt theta lt (pi)/(2) then the v...

    Text Solution

    |

  13. cos A cos 2A cos4 A…… cos2^(n-1) A equals

    Text Solution

    |

  14. Prove that tan 9^circ - tan 27^circ -tan 63^circ + tan 81^circ = 4.

    Text Solution

    |

  15. (cos theta)/(1 + sin theta) equals

    Text Solution

    |

  16. Let alpha, beta be such that pi lt alpha -beta lt 3 pi. If sin alpha...

    Text Solution

    |

  17. cos^(2)(A-B)+cos^(2)B-2cos(A-B).cosA.cosB=?

    Text Solution

    |

  18. cos^(2)""(pi)/(16)+cos^(2)""(3pi)/(16)+cos^(2)""(5pi)/(16)+cos^(2)""(7...

    Text Solution

    |

  19. If sin theta - cos theta = (sqrt(3)-1)/(2), " then " theta equals

    Text Solution

    |

  20. If 1 + cos x cos y + sin x sin y = 0, then which of the following is ...

    Text Solution

    |