Home
Class 12
MATHS
Let [t] d enote the greatest integer lt ...

Let [t] d enote the greatest integer `lt t`. The number of points where the function `f(x) = [x]abs(x^2-1) + sin (pi/([x] + 3)) - [x + 1], x in (-2, 2)` is not continuous is _________.

Text Solution

AI Generated Solution

The correct Answer is:
To determine the number of points where the function \( f(x) = [x] |x^2 - 1| + \sin\left(\frac{\pi}{[x] + 3}\right) - [x + 1] \) is not continuous for \( x \in (-2, 2) \), we will analyze the function step by step. ### Step 1: Analyze the Greatest Integer Function The greatest integer function \( [x] \) takes the largest integer less than or equal to \( x \). For the interval \( (-2, 2) \), the values of \( [x] \) can be: - For \( x \in (-2, -1) \), \( [x] = -2 \) - For \( x \in [-1, 0) \), \( [x] = -1 \) - For \( x \in [0, 1) \), \( [x] = 0 \) - For \( x \in [1, 2) \), \( [x] = 1 \) ### Step 2: Analyze the Modulus Function The function \( |x^2 - 1| \) changes its behavior at \( x = -1 \) and \( x = 1 \): - For \( x < -1 \) or \( x > 1 \), \( |x^2 - 1| = x^2 - 1 \) - For \( -1 < x < 1 \), \( |x^2 - 1| = -(x^2 - 1) = 1 - x^2 \) ### Step 3: Break Down the Function into Intervals We will analyze the function in the intervals determined by the values of \( [x] \): 1. **Interval \( (-2, -1) \)**: - \( [x] = -2 \) - \( f(x) = -2(x^2 - 1) + \sin\left(\frac{\pi}{-2 + 3}\right) - (-2 + 1) \) - Simplifies to \( f(x) = -2x^2 + 2 + \sin\left(\frac{\pi}{1}\right) + 1 \) 2. **Interval \( [-1, 0) \)**: - \( [x] = -1 \) - \( f(x) = -1(1 - x^2) + \sin\left(\frac{\pi}{-1 + 3}\right) - 0 \) - Simplifies to \( f(x) = -1 + x^2 + \sin\left(\frac{\pi}{2}\right) \) 3. **Interval \( [0, 1) \)**: - \( [x] = 0 \) - \( f(x) = 0(1 - x^2) + \sin\left(\frac{\pi}{0 + 3}\right) - 1 \) - Simplifies to \( f(x) = \sin\left(\frac{\pi}{3}\right) - 1 \) 4. **Interval \( [1, 2) \)**: - \( [x] = 1 \) - \( f(x) = 1(x^2 - 1) + \sin\left(\frac{\pi}{1 + 3}\right) - 2 \) - Simplifies to \( f(x) = x^2 - 1 + \sin\left(\frac{\pi}{4}\right) - 2 \) ### Step 4: Check Continuity at Critical Points We need to check continuity at the points where \( [x] \) changes, which are \( x = -1, 0, 1 \). 1. **At \( x = -1 \)**: - Left-hand limit: \( \lim_{x \to -1^-} f(x) = -2(-1)^2 + 2 + 0 = 1 \) - Right-hand limit: \( \lim_{x \to -1^+} f(x) = -1 + 1 + 1 = 1 \) - \( f(-1) = 1 \) - **Continuous at \( x = -1 \)**. 2. **At \( x = 0 \)**: - Left-hand limit: \( \lim_{x \to 0^-} f(x) = -1 + 0 + 1 = 0 \) - Right-hand limit: \( \lim_{x \to 0^+} f(x) = \sin\left(\frac{\pi}{3}\right) - 1 = \frac{\sqrt{3}}{2} - 1 \) - **Not continuous at \( x = 0 \)**. 3. **At \( x = 1 \)**: - Left-hand limit: \( \lim_{x \to 1^-} f(x) = \frac{\sqrt{3}}{2} - 1 \) - Right-hand limit: \( \lim_{x \to 1^+} f(x) = 1 - 1 + \frac{1}{\sqrt{2}} - 2 = -1 + \frac{1}{\sqrt{2}} \) - **Not continuous at \( x = 1 \)**. ### Conclusion The function \( f(x) \) is not continuous at \( x = 0 \) and \( x = 1 \). Therefore, the number of points where the function is not continuous is **2**.
Promotional Banner

Topper's Solved these Questions

  • JEE MAINS 2021

    JEE MAINS PREVIOUS YEAR|Exercise Mathematics (Section A)|80 Videos
  • JEE MAINS 2021

    JEE MAINS PREVIOUS YEAR|Exercise Mathematics (Section B)|50 Videos
  • JEE MAINS 2021

    JEE MAINS PREVIOUS YEAR|Exercise Mathematics Section A|40 Videos
  • JEE MAINS 2020

    JEE MAINS PREVIOUS YEAR|Exercise MATHEMATICS|250 Videos
  • JEE MAINS 2022

    JEE MAINS PREVIOUS YEAR|Exercise MATHEMATICS (SECTION - B)|10 Videos

Similar Questions

Explore conceptually related problems

Let [t] denote the greatest integer lt t . The number of points where the function f(x) = [x]abs(x^2-1) + sin (pi/([x] + 3)) - [x + 1], x in (-2, 2) is not continuous is _________.

Let f(x)=[2x^(3)-5] I.denotes the greatest integer function.Then number of points in (1,2) where the function is discontinuous, is/are

If [.] denotes the greatest integer function then the number of points where f(x)=[x]+[x+(1)/(3)]+[x+(2)/(3)] is Discontinuous for x in(0,3) are

The number of points at which the function f(x)=(1)/(x-[x])([.] denotes,the greatest integer function) is not continuous is

Let f(x)=(-1)^([x]) where [.] denotes the greatest integer function),then

The primitive of the function f(x)=(2x+1)|sin x| , when pi lt x lt 2 pi is

The number of points where f(x)=[sin x+cos x] (where [.] denotes the greatest integer function x in(0,2 pi) is not continuous is (A) 3(B)4(C)5(D)6

Let [x] be the greatest integer function f(x)=((sin((1)/(4)(pi[x])))/([x])) is

JEE MAINS PREVIOUS YEAR-JEE MAINS 2021-Mathematics Section B
  1. Let the points of intersections of the lines x -y +1 = 0, x -2y + 3 = ...

    Text Solution

    |

  2. If the sum of the coefficients in the expansion of (a+b)^n is 4096, th...

    Text Solution

    |

  3. Let X be a random variable with distribution. If the mean of X is...

    Text Solution

    |

  4. Let [t] d enote the greatest integer lt t. The number of points where ...

    Text Solution

    |

  5. All the arrangements, with or without meaning, of the word FARMER are ...

    Text Solution

    |

  6. If for the complex numbers z satisfying abs(z - 2 -2i) lt 1, the maxim...

    Text Solution

    |

  7. Let vec a = 2hati - hatj + 2hatk and vecb = hati + 2hatj - hatk. Let a...

    Text Solution

    |

  8. Let f(x) = x^6 + 2x^4 + x^3 + 2x + 3, x in R. Then the n natural numbe...

    Text Solution

    |

  9. Let f(x) be a polynomial of degree 3 such that f(k) = - 2/k" for " k...

    Text Solution

    |

  10. A man starts walking from the point P( -3, 4), touches the x-axis at R...

    Text Solution

    |

  11. If the line y = mx bisects the area enclosed by the lines x = 0, y = 0...

    Text Solution

    |

  12. The number of 4-digit numbers which are neither multiple of 7 nor mult...

    Text Solution

    |

  13. If S = (7)/(5) + (9)/(5^(2)) + (13)/(5^(3)) + (19)/(5^(4)) + …., then ...

    Text Solution

    |

  14. A tangent line L is drawn at the point (2, -4) on the parabola y^(2) =...

    Text Solution

    |

  15. Let f(x) be a cubic polynomial with f(1) = -10, f(-1) = 6, and has a l...

    Text Solution

    |

  16. Suppose the line (x-2)/(alpha) = (y-2)/(-5) = (z+2)/(2) lies on the pl...

    Text Solution

    |

  17. If int(sin x)/(sin^(3)x + cos^(3)x) dx = alpha log(e)|1 + tan x| + bet...

    Text Solution

    |

  18. The number of elements in the set {A = ((a, b),(0, d)): a, b, d in {...

    Text Solution

    |

  19. Let B the centre of the circle x^(2) + y^(2) - 2x + 4y + 1 = 0. Let th...

    Text Solution

    |

  20. If the coefficient of a^(7)b^(8) in the expansion of (a + 2b + 4ab)^(1...

    Text Solution

    |