Home
Class 12
MATHS
If int(sin x)/(sin^(3)x + cos^(3)x) dx =...

If `int(sin x)/(sin^(3)x + cos^(3)x) dx = alpha log_(e)|1 + tan x| + beta log_(e)|1-tan x + tan^(2)x| + gamma tan^(-1)((2 tan x - 1)/(sqrt(3))) + C`, when C is constant of integration, then the value of `18(alpha+ beta + gamma^(2))` is __________.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ \int \frac{\sin x}{\sin^3 x + \cos^3 x} \, dx, \] we will follow these steps: ### Step 1: Simplify the Integral We start by dividing both the numerator and the denominator by \(\cos^3 x\): \[ \int \frac{\sin x}{\sin^3 x + \cos^3 x} \, dx = \int \frac{\frac{\sin x}{\cos^3 x}}{\frac{\sin^3 x}{\cos^3 x} + 1} \, dx = \int \frac{\tan x \sec^2 x}{\tan^3 x + 1} \, dx. \] ### Step 2: Substitution Let \( t = \tan x \). Then, we have: \[ \sec^2 x \, dx = dt \quad \text{or} \quad dx = \frac{dt}{\sec^2 x} = \frac{dt}{1 + t^2}. \] Substituting this into the integral gives: \[ \int \frac{t}{t^3 + 1} \, dt. \] ### Step 3: Partial Fraction Decomposition We can decompose \( \frac{t}{t^3 + 1} \): \[ t^3 + 1 = (t + 1)(t^2 - t + 1). \] Thus, we can express: \[ \frac{t}{t^3 + 1} = \frac{A}{t + 1} + \frac{Bt + C}{t^2 - t + 1}. \] Multiplying through by the denominator \( t^3 + 1 \) and equating coefficients will allow us to find \( A, B, \) and \( C \). ### Step 4: Solve for Coefficients Setting up the equation: \[ t = A(t^2 - t + 1) + (Bt + C)(t + 1). \] Expanding and collecting like terms will yield a system of equations to solve for \( A, B, \) and \( C \). ### Step 5: Integrate Each Term Once we have \( A, B, \) and \( C \), we can integrate each term separately: 1. The integral of \( \frac{A}{t + 1} \) gives \( A \ln |t + 1| \). 2. The integral of \( \frac{Bt + C}{t^2 - t + 1} \) can be handled using substitution or completing the square. ### Step 6: Back Substitute After integrating, we will substitute back \( t = \tan x \) to express the integral in terms of \( x \). ### Step 7: Identify Constants From the final expression, we will identify \( \alpha, \beta, \gamma \) based on the logarithmic and arctangent terms in the result. ### Step 8: Calculate \( 18(\alpha + \beta + \gamma^2) \) Finally, we substitute the values of \( \alpha, \beta, \gamma \) into the expression \( 18(\alpha + \beta + \gamma^2) \) to find the answer.
Promotional Banner

Topper's Solved these Questions

  • JEE MAINS 2021

    JEE MAINS PREVIOUS YEAR|Exercise Mathematics (Section A)|80 Videos
  • JEE MAINS 2021

    JEE MAINS PREVIOUS YEAR|Exercise Mathematics (Section B)|50 Videos
  • JEE MAINS 2021

    JEE MAINS PREVIOUS YEAR|Exercise Mathematics Section A|40 Videos
  • JEE MAINS 2020

    JEE MAINS PREVIOUS YEAR|Exercise MATHEMATICS|250 Videos
  • JEE MAINS 2022

    JEE MAINS PREVIOUS YEAR|Exercise MATHEMATICS (SECTION - B)|10 Videos

Similar Questions

Explore conceptually related problems

int (sinx)/(sin^3x+cos^3x)dx=alphalnabs(1+tanx) + beta lnabs(1-tanx+tan^2x)+gammatan^-1((2tan^-1-1)/sqrt3)+c then find 18(alpha+beta+gamma^2)

If lim _( x to 0) (alpha x e ^(x) - beta log _(e) (1 + x ) + gamma x ^(2) e ^(-x))/( x^2 sin x) = 10, alpha , beta, gamma in R, then the value of alpha+ beta + gamma is ____________.

If alpha=tan^(-1)((sqrt(3)x)/(2 lambda-x)),beta=tan^(-1)((2x-lambda)/(lambda sqrt(3))) then one of the value of alpha-beta is

For real numbers alpha, beta, gamma and delta , if int((x^(2)-1)+tan^(-1)((x^(2)+1)/(x)))/((x^(4)+3x^(2)+1)tan^(-1)((x^(2)+1)/(x)))dx = alpha log_(e)(tan^(-1)((x^(2)+1)/(x)))+beta "tan"^(-1)((gamma(x^(2)-1))/(x))+delta tan ((x^(2)+1)/(x))+C where is an arbitrary constant, then the value of 10(alpha+betagamma+delta) is equal to........

int(x+x^((2)/(3))+(x)^((1)/(3)))/(x(1+(x)^((1)/(6)))dx=alpha x^(beta)+gamma tan^(-1)(x^(delta))+C where C is constant of integration,then which of the following is (are) correct?

int_( then p )^( If )(dx)/(1+tan x)=px+q log_(e)|cos x+sin x|+c

If tan ^ (2) alpha tan ^ (2) beta + tan ^ (2) beta tan ^ (2) gamma + tan ^ (2) gamma tan ^ (2) alpha + 2tan ^ (2) alpha tan ^ (2 ) beta tan ^ (2) gamma = 1 then sin ^ (2) alpha + sin ^ (2) beta + sin ^ (2) gamma =

2tan ^ (2) alpha tan ^ (2) beta tan ^ (2) gamma + tan ^ (2) alpha tan ^ (2) beta + tan ^ (2) beta tan ^ (2) gamma + tan ^ (2) gamma tan ^ (2) alpha find the value of sin ^ (2) alpha + sin ^ (2) beta + sin ^ (2) gamma

If log_(3) sin x-log_(3) cos x-log_(3)(1- tan x)-log_(3)(1+tan x)= -1 , then tan2x is equal to (wherever defined)

42.If int(sin2x+2tan x)/((cos^(6)x+6cos^(2)x+4))dx=(1)/(alpha)ln| beta+(delta)/(cos^(gamma)x)+(gamma)/(cos^(delta)x)|+c where c is constant of Integration and alpha; beta ;gamma ;delta in N and gamma delta then then which of the following is

JEE MAINS PREVIOUS YEAR-JEE MAINS 2021-Mathematics Section B
  1. Let the points of intersections of the lines x -y +1 = 0, x -2y + 3 = ...

    Text Solution

    |

  2. If the sum of the coefficients in the expansion of (a+b)^n is 4096, th...

    Text Solution

    |

  3. Let X be a random variable with distribution. If the mean of X is...

    Text Solution

    |

  4. Let [t] d enote the greatest integer lt t. The number of points where ...

    Text Solution

    |

  5. All the arrangements, with or without meaning, of the word FARMER are ...

    Text Solution

    |

  6. If for the complex numbers z satisfying abs(z - 2 -2i) lt 1, the maxim...

    Text Solution

    |

  7. Let vec a = 2hati - hatj + 2hatk and vecb = hati + 2hatj - hatk. Let a...

    Text Solution

    |

  8. Let f(x) = x^6 + 2x^4 + x^3 + 2x + 3, x in R. Then the n natural numbe...

    Text Solution

    |

  9. Let f(x) be a polynomial of degree 3 such that f(k) = - 2/k" for " k...

    Text Solution

    |

  10. A man starts walking from the point P( -3, 4), touches the x-axis at R...

    Text Solution

    |

  11. If the line y = mx bisects the area enclosed by the lines x = 0, y = 0...

    Text Solution

    |

  12. The number of 4-digit numbers which are neither multiple of 7 nor mult...

    Text Solution

    |

  13. If S = (7)/(5) + (9)/(5^(2)) + (13)/(5^(3)) + (19)/(5^(4)) + …., then ...

    Text Solution

    |

  14. A tangent line L is drawn at the point (2, -4) on the parabola y^(2) =...

    Text Solution

    |

  15. Let f(x) be a cubic polynomial with f(1) = -10, f(-1) = 6, and has a l...

    Text Solution

    |

  16. Suppose the line (x-2)/(alpha) = (y-2)/(-5) = (z+2)/(2) lies on the pl...

    Text Solution

    |

  17. If int(sin x)/(sin^(3)x + cos^(3)x) dx = alpha log(e)|1 + tan x| + bet...

    Text Solution

    |

  18. The number of elements in the set {A = ((a, b),(0, d)): a, b, d in {...

    Text Solution

    |

  19. Let B the centre of the circle x^(2) + y^(2) - 2x + 4y + 1 = 0. Let th...

    Text Solution

    |

  20. If the coefficient of a^(7)b^(8) in the expansion of (a + 2b + 4ab)^(1...

    Text Solution

    |