Home
Class 12
CHEMISTRY
Ph - CH(2) - overset(O)overset(||)(C) - ...

`Ph - CH_(2) - overset(O)overset(||)(C) - OH underset((2)H^(oplus))overset((1)NaOH,CaO,Delta)(rarr)(A)`
Product (A) is :

A

`Ph - CO_(2)H`

B

`Ph - CH_(2) - OH`

C

`Ph - CH_(3)`

D

Text Solution

Verified by Experts

The correct Answer is:
C

Sodalime process (`CO_(2)` will evolve)
Promotional Banner

Topper's Solved these Questions

  • HYDROCARBONS (ALKANES)

    MS CHOUHAN|Exercise LEVEL - 2 (2. COMPREHENSION) |7 Videos
  • GRIGNARD REAGENT

    MS CHOUHAN|Exercise Level-2 (Subjective Problems)|6 Videos
  • HYDROCARBONS (ALKENES)

    MS CHOUHAN|Exercise LEVEL-2|22 Videos

Similar Questions

Explore conceptually related problems

Et-O-overset(O)overset(||)(C)-O-Et underset((2) H_(3)O^(o+))overset((1) HC_(3)MgBr ("excess"))rarr (A) , Product (A) is :

PhMgBr + CH_(3)-CN underset(H_(3)O^(o+))rarr (A) Ph-overset(O)overset(||)(C)-O-H underset((2) H_(3)O)overset("(1) excess " CH_(3)-Li)rarr (A) Same product (A) will form in both reactions A is :

Ph- CH = CH - overset(O)overset(||) C - OH The IUPAC name is :

Ph-overset(O)overset(||)(C)-OHoverset(SOCl_(2))to(A)underset(Pd-BaSO_(4))overset(H_(2))to(B) Product (B) is :

CH_(3)-overset(O)overset(||)(C)-OHunderset(Delta)overset(Ca(OH)_(2))to(A) Product (A) is :

underset("(excess)")(CH_(3)MgBr) + Et - O-overset(O)overset(||)(C)-O -Et underset((2) H^(o+))rarr (A) , Product A is :

CH_(3)CH_(2)-overset(O)overset(||)(C)-CH_(3)underset(HCl)overset(NaNO_(2))to , Major product of this reaction is :

CH_3 - CH_2 - CH_2 - CH_2 - underset(CH_3) underset(|)overset(CH_3)overset(|)C-CH_2 -OH underset(Delta) overset(H^(+))to underset(("major"))(A) product (A) is :

CH_(3)-CH=CH_(2) underset("h v (low conc.)")overset(Br_(2))rarr underset("Dry ether")overset(Mg)rarr underset(NH_(4)Cl)overset(CH_(3)-overset(O)overset(||)(C)-CH_(3))rarr underset(Delta)overset(H^(+))rarr underset("(major)")((X)) End product (X) of the above reaction is :

In the reaction : CH_(3) - underset(Br)underset(|)overset(Br)overset(|)(C) - underset(Br)underset(|)overset(Br)overset(|)(C) - H overset(Zn)rarr the product is :