Home
Class 12
PHYSICS
Magnetic scalar potential is defined as ...

Magnetic scalar potential is defined as
`U(vec r_2) - U vec (r_1) = - int_vec(r_1) ^vec(r_2) vecB.vec(dl)`
Apply this equation to a closed curve enclosing a long straight wire. The RHS of the above equation is then `mu_0 i` by Ampere's law. We see that `U vec r_2) != U(vec r_1)` even when `vec r_2` `= vec r_1`. Can we have a magnetic scalar potential in this case.?

Promotional Banner

Topper's Solved these Questions

  • PERMANENT MAGNETS

    HC VERMA|Exercise Objective|13 Videos
  • PERMANENT MAGNETS

    HC VERMA|Exercise Objective II|5 Videos
  • PERMANENT MAGNETS

    HC VERMA|Exercise Worker out examples|19 Videos
  • OPTICAL INSTRUMENTS

    HC VERMA|Exercise Exercises|23 Videos
  • PHOTO ELECTRIC EFFECT AND WAVE PARTICLE DUALITY

    HC VERMA|Exercise Exercise|35 Videos

Similar Questions

Explore conceptually related problems

If vec aa n d vec b are two given vectors and k is any scalar, then find the vector vec r satisfying vec rxx vec a+k vec r= vec bdot

If vec rdot hat i= vec rdot hat j= vec rdot hat ka n d| vec r|=3, then find the vector vec rdot

If vec r_1, vec r_2, vec r_3 are the position vectors of the collinear points and scalar p a n d q exist such that vec r_3=p vec r_1+q vec r_2, then show that p+q=1.

The equation of a line passing through the point vec a parallel to the plane vec rdot vec n=q and perpendicular to the line vec r= vec b+t vec c is a. vec r= vec a+lambda( vec nxx vec c) b. ( vec r- vec a)xx( vec nxx vec c) c. vec r= vec b+lambda( vec nxx vec c) d. none of these

Let vec a, vec b, and vec c be three non coplanar unit vectors such that the angle between every pair of them is pi/3 . If vec a xx vec b+ vecb xx vec x=p vec a + q vec b + r vec c where p,q,r are scalars then the value of (p^2+2q^2+r^2)/(q^2) is

Let vec a=- hat i- hat k , vec b=- hat i+ hat ja n d vec c= hat i+2 hat j+3 hat k be three given vectors. If vec r is a vector such that vec rxx vec b= vec cxx vec b and vec r . vec a=0, then find the value of vec r . vec bdot

If F is the force acting on a particle having position vector vec r and vec tau be the torque of this force about the origin , then,

Let vec r be a unit vector satisfying vec rxx vec a= vec b ,w h e r e| vec a|=3a n d| vec b|=2. Then vec r=2/3( vec a+ vec axx vec b) b. vec r=1/3( vec a+ vec axx vec b c. vec r=2/3( vec a- vec axx vec b d. vec r=1/3(- vec a+ vec axx vec b

If vec r . vec a= vec r . vec b= vec rdot vec c=1/2 or some nonzero vector vec r , then the area of the triangle whose vertices are A( vec a),B( vec b)a n dC( vec c)i s( vec a , vec b , vec c are non-coplanar ) a. |[ vec a vec b vec c]| b. | vec r| c. |[ vec a vec b vec c] vec r| d. none of these

If vecV=2vec i+ vec(j) - vec(k) " and " vec(W) = vec(i) + 3vec(k) . if vec (U) is a unit vectors then the maximum value of the scalar triple product [vec(U) , vec(V) , vec(W)] is