Home
Class 12
MATHS
The value of (16)^((5)/(2)) + (16)^((-3)...

The value of `(16)^((5)/(2)) + (16)^((-3)/(2))` is equal to

A

`(66738)/(5)`

B

`(66635)/(46)`

C

`(65537)/(64)`

D

`(63537)/(64)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( (16)^{\frac{5}{2}} + (16)^{-\frac{3}{2}} \), we will break it down into manageable steps. ### Step 1: Simplify \( (16)^{\frac{5}{2}} \) We can rewrite \( 16 \) as \( 4^2 \). Therefore, we have: \[ (16)^{\frac{5}{2}} = (4^2)^{\frac{5}{2}} \] Using the power of a power property \( (a^m)^n = a^{m \cdot n} \): \[ (4^2)^{\frac{5}{2}} = 4^{2 \cdot \frac{5}{2}} = 4^5 \] Now, calculating \( 4^5 \): \[ 4^5 = 1024 \] ### Step 2: Simplify \( (16)^{-\frac{3}{2}} \) Again, rewriting \( 16 \) as \( 4^2 \): \[ (16)^{-\frac{3}{2}} = (4^2)^{-\frac{3}{2}} \] Using the power of a power property: \[ (4^2)^{-\frac{3}{2}} = 4^{-3} \] Calculating \( 4^{-3} \): \[ 4^{-3} = \frac{1}{4^3} = \frac{1}{64} \] ### Step 3: Combine the results Now, we add the two results together: \[ (16)^{\frac{5}{2}} + (16)^{-\frac{3}{2}} = 1024 + \frac{1}{64} \] To add these, we need a common denominator. The common denominator between \( 1024 \) (which can be expressed as \( \frac{1024 \times 64}{64} \)) and \( \frac{1}{64} \) is \( 64 \): \[ 1024 = \frac{1024 \times 64}{64} = \frac{65536}{64} \] Now, adding them together: \[ \frac{65536}{64} + \frac{1}{64} = \frac{65536 + 1}{64} = \frac{65537}{64} \] ### Final Answer Thus, the value of \( (16)^{\frac{5}{2}} + (16)^{-\frac{3}{2}} \) is: \[ \frac{65537}{64} \] ---
Promotional Banner

Topper's Solved these Questions

  • INDICES AND SURDS

    ARIHANT PUBLICATION JHARKHAND|Exercise Exam Booster (For Cracking Exam)|20 Videos
  • HYDROSTATICS

    ARIHANT PUBLICATION JHARKHAND|Exercise Exam booster for cracking exam|35 Videos
  • LOGARITHMS

    ARIHANT PUBLICATION JHARKHAND|Exercise Exam Booster For Cracking JEE|20 Videos

Similar Questions

Explore conceptually related problems

Find the value of {(16)^((3)/(2))+(16)^(-(3)/(2))}

The value of sum_(r = 16)^(30)(r + 2)(r - 3) is equal to :

"The value of (5(1)/(16))^((-3)/(4)) is

Evaluate (16)^(5/2) .

The value of tan((pi)/(16))+2tan((pi)/(8))+4 is equal to