Home
Class 12
MATHS
The value of 3xx 9^(-3//2) xx 9^(1//2) i...

The value of `3xx 9^(-3//2) xx 9^(1//2)` is

A

`(1)/(3)`

B

3

C

27

D

`-(1)/(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \(3 \times 9^{-\frac{3}{2}} \times 9^{\frac{1}{2}}\), we can follow these steps: ### Step 1: Rewrite the base First, we note that \(9\) can be expressed as \(3^2\). Therefore, we can rewrite the expression as: \[ 3 \times (3^2)^{-\frac{3}{2}} \times (3^2)^{\frac{1}{2}} \] ### Step 2: Apply the power of a power rule Using the power of a power rule \((a^m)^n = a^{m \cdot n}\), we can simplify the exponents: \[ 3 \times 3^{-3} \times 3^1 \] This is because: \[ (3^2)^{-\frac{3}{2}} = 3^{2 \cdot -\frac{3}{2}} = 3^{-3} \] and \[ (3^2)^{\frac{1}{2}} = 3^{2 \cdot \frac{1}{2}} = 3^1 \] ### Step 3: Combine the exponents Now, we can combine the powers of \(3\) using the rule \(a^m \times a^n = a^{m+n}\): \[ 3^{1} \times 3^{-3} \times 3^{1} = 3^{1 - 3 + 1} \] Calculating the exponent: \[ 1 - 3 + 1 = -1 \] Thus, we have: \[ 3^{-1} \] ### Step 4: Simplify the expression The expression \(3^{-1}\) can be rewritten as: \[ \frac{1}{3} \] ### Final Answer Therefore, the value of \(3 \times 9^{-\frac{3}{2}} \times 9^{\frac{1}{2}}\) is: \[ \frac{1}{3} \]
Promotional Banner

Topper's Solved these Questions

  • INDICES AND SURDS

    ARIHANT PUBLICATION JHARKHAND|Exercise Exam Booster (For Cracking Exam)|20 Videos
  • HYDROSTATICS

    ARIHANT PUBLICATION JHARKHAND|Exercise Exam booster for cracking exam|35 Videos
  • LOGARITHMS

    ARIHANT PUBLICATION JHARKHAND|Exercise Exam Booster For Cracking JEE|20 Videos

Similar Questions

Explore conceptually related problems

The vlaue of 9^(1//3)xx9^(1//9)xx9^(1//27)xx………oo is :

The value of 64 :-2 xx (9 :- 3) xx 3 :- 9 - 32 is :

The value of 3-(9-3xx8 div 2) is:- 3-(9-3xx8 div 2) का मान क्या होगा ?

The value of (3)/(4) xx 2 (2)/(3) -: (5)/(9) " of " 1(1)/(5) + (2)/(23) xx 3 (5)/(6) -: (2)/(7) " of " 2(1)/(3) is :