Home
Class 12
MATHS
The value of 27^(-1//3) xx [27^(2//3) + ...

The value of `27^(-1//3) xx [27^(2//3) + 27^(1//3)]` is

A

4

B

3

C

2

D

1

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( 27^{-\frac{1}{3}} \times [27^{\frac{2}{3}} + 27^{\frac{1}{3}}] \), we can follow these steps: ### Step 1: Rewrite the expression We start with the expression: \[ 27^{-\frac{1}{3}} \times [27^{\frac{2}{3}} + 27^{\frac{1}{3}}] \] ### Step 2: Apply the property of indices Using the property of indices \( a^m \times a^n = a^{m+n} \), we can distribute \( 27^{-\frac{1}{3}} \) to both terms inside the brackets: \[ = 27^{-\frac{1}{3}} \times 27^{\frac{2}{3}} + 27^{-\frac{1}{3}} \times 27^{\frac{1}{3}} \] ### Step 3: Simplify each term Now, we simplify each term using the property of indices: 1. For the first term: \[ 27^{-\frac{1}{3}} \times 27^{\frac{2}{3}} = 27^{-\frac{1}{3} + \frac{2}{3}} = 27^{\frac{1}{3}} \] 2. For the second term: \[ 27^{-\frac{1}{3}} \times 27^{\frac{1}{3}} = 27^{-\frac{1}{3} + \frac{1}{3}} = 27^{0} = 1 \] ### Step 4: Combine the results Now, we can combine the results from the two terms: \[ 27^{\frac{1}{3}} + 1 \] ### Step 5: Evaluate \( 27^{\frac{1}{3}} \) We know that: \[ 27 = 3^3 \implies 27^{\frac{1}{3}} = (3^3)^{\frac{1}{3}} = 3^{3 \times \frac{1}{3}} = 3^1 = 3 \] ### Step 6: Final result Now substituting back, we have: \[ 3 + 1 = 4 \] Thus, the value of the expression \( 27^{-\frac{1}{3}} \times [27^{\frac{2}{3}} + 27^{\frac{1}{3}}] \) is \( \boxed{4} \). ---
Promotional Banner

Topper's Solved these Questions

  • INDICES AND SURDS

    ARIHANT PUBLICATION JHARKHAND|Exercise Exam Booster (For Cracking Exam)|20 Videos
  • HYDROSTATICS

    ARIHANT PUBLICATION JHARKHAND|Exercise Exam booster for cracking exam|35 Videos
  • LOGARITHMS

    ARIHANT PUBLICATION JHARKHAND|Exercise Exam Booster For Cracking JEE|20 Videos

Similar Questions

Explore conceptually related problems

Find the value of (27 xx 2744)^(1//3)

Find the value of (27)^3