Home
Class 12
MATHS
The value of (x^(a-b))^(c ) xx (x^(b-c))...

The value of `(x^(a-b))^(c ) xx (x^(b-c))^(a) xx (x^(c-a))^(b)` is

A

0

B

1

C

`x^(ab)`

D

`x^(bc)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \((x^{(a-b)})^{c} \cdot (x^{(b-c)})^{a} \cdot (x^{(c-a)})^{b}\), we will use the properties of exponents. Here’s the step-by-step solution: ### Step 1: Apply the Power of a Power Property Using the property \((x^m)^n = x^{m \cdot n}\), we can rewrite each term: \[ (x^{(a-b)})^{c} = x^{(a-b)c} \] \[ (x^{(b-c)})^{a} = x^{(b-c)a} \] \[ (x^{(c-a)})^{b} = x^{(c-a)b} \] ### Step 2: Combine the Exponents Now, we can combine these exponents since they have the same base \(x\): \[ x^{(a-b)c} \cdot x^{(b-c)a} \cdot x^{(c-a)b} = x^{(a-b)c + (b-c)a + (c-a)b} \] ### Step 3: Simplify the Exponent Next, we simplify the exponent: \[ (a-b)c + (b-c)a + (c-a)b \] Expanding each term: - The first term: \(ac - bc\) - The second term: \(ab - ac\) - The third term: \(bc - ab\) Now, combine these: \[ (ac - bc) + (ab - ac) + (bc - ab) \] ### Step 4: Combine Like Terms Now, combine the like terms: - \(ac - ac\) cancels out - \(ab - ab\) cancels out - \(-bc + bc\) cancels out Thus, we have: \[ 0 \] ### Step 5: Final Result So, we can conclude: \[ x^{0} = 1 \] Therefore, the value of the expression \((x^{(a-b)})^{c} \cdot (x^{(b-c)})^{a} \cdot (x^{(c-a)})^{b}\) is: \[ \boxed{1} \]
Promotional Banner

Topper's Solved these Questions

  • INDICES AND SURDS

    ARIHANT PUBLICATION JHARKHAND|Exercise Exam Booster (For Cracking Exam)|20 Videos
  • HYDROSTATICS

    ARIHANT PUBLICATION JHARKHAND|Exercise Exam booster for cracking exam|35 Videos
  • LOGARITHMS

    ARIHANT PUBLICATION JHARKHAND|Exercise Exam Booster For Cracking JEE|20 Videos

Similar Questions

Explore conceptually related problems

The value of ((x^(a))/(x^(b)))^(a+b) xx ((x^(b))/(x^(c)))^(b+c) xx ((x^(c))/(x^(a)))^(c + a) is equal to

The value of ((x^(a))/(x^(b)))^((1)/(ab)) xx ((x^(b))/(x^(c)))^((1)/(bc)) xx ((x^(c))/(x^(a)))^((1)/(ca)) is equal to

Find the value of the expression ((x^(a+b))^2xx (x^(b+c))^2xx(x^(c+a))^2)/(x^a x^b x^c)^4, if x=2,a=1,b=2,c=3

The value of (a-c)/((a-b)(x-a)) + (b-c)/((b-a)(x-b)) is: