Home
Class 12
MATHS
The value of ((a^(x))/(a^(y)))^(x+y) xx ...

The value of `((a^(x))/(a^(y)))^(x+y) xx ((a^(y))/(a^(z)))^(y+z) xx ((a^(z))/(a^(x)))^(z+x)` is

A

0

B

`(1)/(y)`

C

1

D

`(1)/(xyz)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression: \[ \left( \frac{a^x}{a^y} \right)^{x+y} \times \left( \frac{a^y}{a^z} \right)^{y+z} \times \left( \frac{a^z}{a^x} \right)^{z+x} \] ### Step 1: Simplify Each Term We can simplify each term in the expression using the property of exponents \( \frac{a^m}{a^n} = a^{m-n} \). 1. First term: \[ \left( \frac{a^x}{a^y} \right)^{x+y} = \left( a^{x-y} \right)^{x+y} = a^{(x-y)(x+y)} \] 2. Second term: \[ \left( \frac{a^y}{a^z} \right)^{y+z} = \left( a^{y-z} \right)^{y+z} = a^{(y-z)(y+z)} \] 3. Third term: \[ \left( \frac{a^z}{a^x} \right)^{z+x} = \left( a^{z-x} \right)^{z+x} = a^{(z-x)(z+x)} \] ### Step 2: Combine the Terms Now we can combine all three terms: \[ a^{(x-y)(x+y)} \times a^{(y-z)(y+z)} \times a^{(z-x)(z+x)} = a^{(x-y)(x+y) + (y-z)(y+z) + (z-x)(z+x)} \] ### Step 3: Expand Each Term Now we will expand each of the products in the exponent: 1. For \( (x-y)(x+y) \): \[ (x-y)(x+y) = x^2 - y^2 \] 2. For \( (y-z)(y+z) \): \[ (y-z)(y+z) = y^2 - z^2 \] 3. For \( (z-x)(z+x) \): \[ (z-x)(z+x) = z^2 - x^2 \] ### Step 4: Combine the Expanded Terms Now we can combine these results: \[ x^2 - y^2 + y^2 - z^2 + z^2 - x^2 \] ### Step 5: Simplify the Expression Notice that all terms cancel out: \[ x^2 - y^2 + y^2 - z^2 + z^2 - x^2 = 0 \] ### Step 6: Final Result Thus, we have: \[ a^0 = 1 \] ### Conclusion The value of the given expression is: \[ \boxed{1} \]
Promotional Banner

Topper's Solved these Questions

  • INDICES AND SURDS

    ARIHANT PUBLICATION JHARKHAND|Exercise Exam Booster (For Cracking Exam)|20 Videos
  • HYDROSTATICS

    ARIHANT PUBLICATION JHARKHAND|Exercise Exam booster for cracking exam|35 Videos
  • LOGARITHMS

    ARIHANT PUBLICATION JHARKHAND|Exercise Exam Booster For Cracking JEE|20 Videos

Similar Questions

Explore conceptually related problems

The value of ((a^(x))/(a^(y)))^(x^(2) + xy +y^(2)) xx ((a^(y))/(a^(z)))^(y^(2) + yz + z^(2)) xx ((a^(z))/(a^(x)))^(z^(2) + xz + x^(2)) is

((a^x)/(a^y))^(z)xx((a^y)/(a^z))^(x)xx((a^z)/(a^x))^(y)=____(a ne 0 and a ne 1)

((a^(x^(2)))/a^(y^(2)))^((1)/(x+y))xx((a^(y^(2)))/a^(z^(2)))^((1)/(y+z))xx((a^(Z^(2)))/a^(x^(2)))^((1)/(z+x))= _______

Value of y = sqrt((a^(y/x))/(a_(x/y))) xx sqrt((a_(x/z))/(a_(y/x))) xx sqrt((a_(x/y))/(a_(x/z))) is

"The value of "(x^(2))/((x-y)(x-z))+(y^(2))/((y-z)(y-x))+(z^(2))/((z-x)(z-y))" is : "

Expression ((a^x)/(a^y))^(x^2+xy+y^2)xx(a^y/a^z)^(y^2+yz+z^2)xx(a^z/a^x)^(z^2+zx+x^2) in its simplest force is