Home
Class 12
MATHS
If x= (sqrt126 xx sqrt63 xx sqrt45)/(sqr...

If `x= (sqrt126 xx sqrt63 xx sqrt45)/(sqrt147 xx sqrt243)`, then the value of x is

A

`sqrt5`

B

`sqrt10`

C

10

D

5

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( x = \frac{\sqrt{126} \times \sqrt{63} \times \sqrt{45}}{\sqrt{147} \times \sqrt{243}} \), we will simplify each square root by prime factorization and then combine the results. ### Step 1: Prime Factorization of Each Term 1. **For \( \sqrt{126} \)**: - \( 126 = 2 \times 3^2 \times 7 \) - So, \( \sqrt{126} = \sqrt{2 \times 3^2 \times 7} = 3\sqrt{14} \) 2. **For \( \sqrt{63} \)**: - \( 63 = 3^2 \times 7 \) - So, \( \sqrt{63} = \sqrt{3^2 \times 7} = 3\sqrt{7} \) 3. **For \( \sqrt{45} \)**: - \( 45 = 3^2 \times 5 \) - So, \( \sqrt{45} = \sqrt{3^2 \times 5} = 3\sqrt{5} \) 4. **For \( \sqrt{147} \)**: - \( 147 = 3 \times 7^2 \) - So, \( \sqrt{147} = \sqrt{3 \times 7^2} = 7\sqrt{3} \) 5. **For \( \sqrt{243} \)**: - \( 243 = 3^5 \) - So, \( \sqrt{243} = \sqrt{3^5} = 9\sqrt{3} \) ### Step 2: Substitute the Simplified Square Roots into the Expression Now substituting these back into the expression for \( x \): \[ x = \frac{(3\sqrt{14}) \times (3\sqrt{7}) \times (3\sqrt{5})}{(7\sqrt{3}) \times (9\sqrt{3})} \] ### Step 3: Simplify the Numerator and Denominator 1. **Numerator**: - \( 3\sqrt{14} \times 3\sqrt{7} \times 3\sqrt{5} = 27\sqrt{14 \times 7 \times 5} = 27\sqrt{490} \) 2. **Denominator**: - \( (7\sqrt{3}) \times (9\sqrt{3}) = 63 \times 3 = 189 \) ### Step 4: Combine the Results Thus, we have: \[ x = \frac{27\sqrt{490}}{189} \] ### Step 5: Simplify the Fraction Now simplify \( \frac{27}{189} \): \[ \frac{27}{189} = \frac{1}{7} \] So, we can write: \[ x = \frac{1}{7} \sqrt{490} \] ### Step 6: Simplify \( \sqrt{490} \) Now, simplify \( \sqrt{490} \): - \( 490 = 2 \times 5 \times 7^2 \) - So, \( \sqrt{490} = 7\sqrt{10} \) ### Final Result Thus, substituting back, we get: \[ x = \frac{1}{7} \times 7\sqrt{10} = \sqrt{10} \] ### Conclusion The value of \( x \) is \( \sqrt{10} \). ---
Promotional Banner

Topper's Solved these Questions

  • INDICES AND SURDS

    ARIHANT PUBLICATION JHARKHAND|Exercise Exam Booster (For Cracking Exam)|20 Videos
  • HYDROSTATICS

    ARIHANT PUBLICATION JHARKHAND|Exercise Exam booster for cracking exam|35 Videos
  • LOGARITHMS

    ARIHANT PUBLICATION JHARKHAND|Exercise Exam Booster For Cracking JEE|20 Videos

Similar Questions

Explore conceptually related problems

If sqrt6 xx sqrt15 = x sqrt10 , then the value of x is

sqrt(2)xx sqrt(3)

sqrt72 xx sqrt98= ?

If sqrt(2)^x = 256 , then the value of xx is

sqrt(10)xx sqrt(15)

If (sqrt(1058) xx sqrt(648))/(x) =18 , then the value of x is