Home
Class 12
MATHS
The value of (7sqrt2 +5) (7 sqrt2-5) is...

The value of `(7sqrt2 +5) (7 sqrt2-5)` is

A

37

B

171

C

73

D

`14 sqrt2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \((7\sqrt{2} + 5)(7\sqrt{2} - 5)\), we can use the difference of squares formula, which states that: \[ (a + b)(a - b) = a^2 - b^2 \] ### Step-by-Step Solution: 1. **Identify \(a\) and \(b\)**: - Here, let \(a = 7\sqrt{2}\) and \(b = 5\). 2. **Apply the difference of squares formula**: - According to the formula, we have: \[ (7\sqrt{2} + 5)(7\sqrt{2} - 5) = (7\sqrt{2})^2 - (5)^2 \] 3. **Calculate \(a^2\)**: - Compute \((7\sqrt{2})^2\): \[ (7\sqrt{2})^2 = 7^2 \cdot (\sqrt{2})^2 = 49 \cdot 2 = 98 \] 4. **Calculate \(b^2\)**: - Compute \(5^2\): \[ 5^2 = 25 \] 5. **Subtract \(b^2\) from \(a^2\)**: - Now, substitute back into the formula: \[ 98 - 25 = 73 \] 6. **Final Result**: - Therefore, the value of \((7\sqrt{2} + 5)(7\sqrt{2} - 5)\) is: \[ \boxed{73} \]
Promotional Banner

Topper's Solved these Questions

  • INDICES AND SURDS

    ARIHANT PUBLICATION JHARKHAND|Exercise Exam Booster (For Cracking Exam)|20 Videos
  • HYDROSTATICS

    ARIHANT PUBLICATION JHARKHAND|Exercise Exam booster for cracking exam|35 Videos
  • LOGARITHMS

    ARIHANT PUBLICATION JHARKHAND|Exercise Exam Booster For Cracking JEE|20 Videos

Similar Questions

Explore conceptually related problems

The value of frac (7+3sqrt 5)(3 + sqrt 5)+frac(7 - 3sqrt 5)(3 - sqrt 5) lies between: frac (7 + 3 sqrt 5) (3 + sqrt 5) + frac (7 - 3 sqrt 5) (3 - sqrt 5) का मान के बीच है:

The value of (7+3 sqrt5)/(3+sqrt5)-(7-3 sqrt5)/(3-sqrt5) lies between: (7+3 sqrt5)/(3+sqrt5)-(7-3 sqrt5)/(3-sqrt5) का मान किसके बीच में होगा

The value of (2 sqrt10)/(sqrt5+ sqrt2- sqrt7)- sqrt(( sqrt5-2)/(sqrt5+2))-3/(sqrt7-2) is :- (2 sqrt10)/(sqrt5+ sqrt2- sqrt7)- sqrt(( sqrt5-2)/(sqrt5+2))-3/(sqrt7-2) का मान है :

The value of 5sqrt(3) + 7sqrt(2) - sqrt(6) - 23/(sqrt(2) + sqrt(3) + sqrt(6)) is:

The value of (7+3sqrt""5)/(3+sqrt""5)-(7-3sqrt""5)/(3-sqrt""5) lies between:

The square root of (7+3sqrt5) (7-3sqrt5) is (A) 4 (B) sqrt5 (C) 3sqrt5 (D) 2

The value of (2sqrt(10))/(sqrt(5)+sqrt(2)-sqrt(7))-sqrt((sqrt(5)-2)/(sqrt(5)+2))-3/(sqrt(7)-2) is

If sqrt(35)=5.9160, then the value of (sqrt(7)+sqrt(5))/(sqrt(7)-sqrt(5))

The value of log_((sqrt(2)-1))(5sqrt(2)-7) is :