Home
Class 12
MATHS
The value of ((a^(x))/(a^(y)))^(x^(2) + ...

The value of `((a^(x))/(a^(y)))^(x^(2) + xy +y^(2)) xx ((a^(y))/(a^(z)))^(y^(2) + yz + z^(2)) xx ((a^(z))/(a^(x)))^(z^(2) + xz + x^(2))` is

A

`a^(xy)`

B

1

C

`a^(x)`

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given expression \[ \left(\frac{a^x}{a^y}\right)^{x^2 + xy + y^2} \times \left(\frac{a^y}{a^z}\right)^{y^2 + yz + z^2} \times \left(\frac{a^z}{a^x}\right)^{z^2 + xz + x^2} \] we will follow these steps: ### Step 1: Simplify Each Fraction Using the property of indices, we can simplify each fraction: \[ \frac{a^x}{a^y} = a^{x-y}, \quad \frac{a^y}{a^z} = a^{y-z}, \quad \frac{a^z}{a^x} = a^{z-x} \] ### Step 2: Rewrite the Expression Now we can rewrite the entire expression: \[ \left(a^{x-y}\right)^{x^2 + xy + y^2} \times \left(a^{y-z}\right)^{y^2 + yz + z^2} \times \left(a^{z-x}\right)^{z^2 + xz + x^2} \] ### Step 3: Apply the Power of a Power Rule Using the property \((a^m)^n = a^{mn}\), we can further simplify: \[ a^{(x-y)(x^2 + xy + y^2)} \times a^{(y-z)(y^2 + yz + z^2)} \times a^{(z-x)(z^2 + xz + x^2)} \] ### Step 4: Combine the Exponents Now we can combine the exponents: \[ a^{(x-y)(x^2 + xy + y^2) + (y-z)(y^2 + yz + z^2) + (z-x)(z^2 + xz + x^2)} \] ### Step 5: Analyze the Exponent We need to analyze the expression inside the exponent: Let: - \(A = (x-y)(x^2 + xy + y^2)\) - \(B = (y-z)(y^2 + yz + z^2)\) - \(C = (z-x)(z^2 + xz + x^2)\) We will show that \(A + B + C = 0\). ### Step 6: Expand Each Term Expanding \(A\): \[ A = (x-y)(x^2 + xy + y^2) = x^3 - y^3 \] Similarly, we can expand \(B\) and \(C\): \[ B = (y-z)(y^2 + yz + z^2) = y^3 - z^3 \] \[ C = (z-x)(z^2 + xz + x^2) = z^3 - x^3 \] ### Step 7: Combine the Results Now we combine \(A\), \(B\), and \(C\): \[ A + B + C = (x^3 - y^3) + (y^3 - z^3) + (z^3 - x^3) = 0 \] ### Step 8: Final Result Thus, the exponent simplifies to \(0\): \[ a^0 = 1 \] Therefore, the value of the entire expression is: \[ \boxed{1} \]
Promotional Banner

Topper's Solved these Questions

  • INDICES AND SURDS

    ARIHANT PUBLICATION JHARKHAND|Exercise Exam Booster (For Cracking Exam)|20 Videos
  • HYDROSTATICS

    ARIHANT PUBLICATION JHARKHAND|Exercise Exam booster for cracking exam|35 Videos
  • LOGARITHMS

    ARIHANT PUBLICATION JHARKHAND|Exercise Exam Booster For Cracking JEE|20 Videos

Similar Questions

Explore conceptually related problems

The value of ((a^(x))/(a^(y)))^(x+y) xx ((a^(y))/(a^(z)))^(y+z) xx ((a^(z))/(a^(x)))^(z+x) is

((a^(x^(2)))/a^(y^(2)))^((1)/(x+y))xx((a^(y^(2)))/a^(z^(2)))^((1)/(y+z))xx((a^(Z^(2)))/a^(x^(2)))^((1)/(z+x))= _______

Expression ((a^x)/(a^y))^(x^2+xy+y^2)xx(a^y/a^z)^(y^2+yz+z^2)xx(a^z/a^x)^(z^2+zx+x^2) in its simplest force is

"The value of "(x^(2))/((x-y)(x-z))+(y^(2))/((y-z)(y-x))+(z^(2))/((z-x)(z-y))" is : "

(x)/(y)*(y)/(xz)*(z^(2))/(xy)

(y^(2)+yz+z^(2))/((x-y)(x-z))+(z^(2)+zx+x^(2))/((y-z)(y-x))+(x^(2)+xy+y^(2))/((z-x)(z-y))

If x+y+z=0, then x^(2)+xy+y^(2) equals y^(2)+yz+z^(2)(b)y^(2)-yz+z^(2)(c)z^(2)-zx+x^(2)(d)z^(2)+zx+x^(2)

The following steps are involved in finding the value of (a^(x+y))^(x-y)(a^(y+z))^(y-z)(a^(z+x))^(z-x) . Arrange them in sequantial order. (A) a^((x+y)(x-y).a^(y+z)(y-z).a^((z+x)(z-x)) (B) a^0=1 (C) a^(x^2-y^2).a^(y^2-z^2).a^(z^2-x^2) (D) a^(x^2-y^2+y^2-z^2+z^2-x^2)