Home
Class 12
MATHS
log(a)b xx log(b)c xx log(c) d xx log(d)...

`log_(a)b xx log_(b)c xx log_(c) d xx log_(d)a` is equal to

A

2

B

3

C

1

D

4

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \log_a b \times \log_b c \times \log_c d \times \log_d a \), we can use the change of base formula for logarithms. The change of base formula states that: \[ \log_x y = \frac{\log_k y}{\log_k x} \] for any positive base \( k \). ### Step-by-Step Solution: 1. **Apply Change of Base Formula:** We can rewrite each logarithm using the natural logarithm (or any common base). Let's use natural logarithm \( \ln \): \[ \log_a b = \frac{\ln b}{\ln a}, \quad \log_b c = \frac{\ln c}{\ln b}, \quad \log_c d = \frac{\ln d}{\ln c}, \quad \log_d a = \frac{\ln a}{\ln d} \] 2. **Substitute into the Expression:** Substitute these values back into the original expression: \[ \log_a b \times \log_b c \times \log_c d \times \log_d a = \left(\frac{\ln b}{\ln a}\right) \times \left(\frac{\ln c}{\ln b}\right) \times \left(\frac{\ln d}{\ln c}\right) \times \left(\frac{\ln a}{\ln d}\right) \] 3. **Combine the Fractions:** When we multiply these fractions, we can combine them: \[ = \frac{\ln b \cdot \ln c \cdot \ln d \cdot \ln a}{\ln a \cdot \ln b \cdot \ln c \cdot \ln d} \] 4. **Cancel Common Terms:** Notice that the numerator and the denominator are the same, so they cancel out: \[ = 1 \] 5. **Conclusion:** Therefore, the value of the original expression is: \[ \log_a b \times \log_b c \times \log_c d \times \log_d a = 1 \] ### Final Answer: The final answer is \( 1 \).
Promotional Banner

Topper's Solved these Questions

  • LOGARITHMS

    ARIHANT PUBLICATION JHARKHAND|Exercise Exam Booster For Cracking JEE|20 Videos
  • INDICES AND SURDS

    ARIHANT PUBLICATION JHARKHAND|Exercise Exam Booster (For Cracking Exam)|20 Videos
  • MODEL SOLVED PAPER

    ARIHANT PUBLICATION JHARKHAND|Exercise SECTION-I : MATHEMATICS|50 Videos

Similar Questions

Explore conceptually related problems

If x=log_(k)b=log_(b)c=(1)/(2)log_(c)d, then log_(k)d is equal to

If x=log_(k)b=log_(b)c=(1)/(2)log_(c)d, then log_(k)d is equal to 6x(b)(x^(3))/(2)(c)2x^(3)(d)2x^(8)

log_(x)x xx log_(y)y xx log_(z)z = ______

If x=log_(k)b=log_(b)c=(1)/(2)log_(c)d, thenlog _(k)d is equal to 6x b.(x^(3))/(2) c.2x^(3) d.2x^(8)

(1)/(log_(a)(b))xx(1)/(log_(b)(c))xx(1)/(log_(c)(a)) is equal to

Prove that: log_(a)x=log_(b)x xx log_(c)b xx...xx log_(n)m xx log_(a)n

if y=log_(2)log_(e)xx then (dy)/(dx) is equal to

If x = log_(c) b + log_(b) c, y = log_(a) c + log_(c) a, z = log_(b) a + log_(a) b, then x^(2) + y^(2) + z^(2) - 4 =

If log_(2) x xx log_(3) x = log_(2) x + log_(3) x , then find x .

ARIHANT PUBLICATION JHARKHAND-LOGARITHMS -Exam Booster For Cracking JEE
  1. log(a)b xx log(b)c xx log(c) d xx log(d)a is equal to

    Text Solution

    |

  2. log(5sqrt(5))5 is equal to

    Text Solution

    |

  3. The value of log(6) (216sqrt(6)) is

    Text Solution

    |

  4. the value of (0.05)^(log(sqrt(20))(0.1+0.01+0.001+....)

    Text Solution

    |

  5. IF a = log(24) 12, b = log(36) 24, c = log(48)36, then 1 + abc is equ...

    Text Solution

    |

  6. Find the value of 81^((1//(log)5 3))+27^log36+3^((4/((log)7)9))

    Text Solution

    |

  7. (log(8)17)/(log(9)23) - (log(2sqrt(2))17)/(log(3)23) is equal to

    Text Solution

    |

  8. If log(8)m + log(6) (1)/(6) = (2)/(3), then m is equal to

    Text Solution

    |

  9. If log(2)x xx log(2)"" (x)/(16) + 4 = 0, then x is equal to

    Text Solution

    |

  10. If log x, log y and log z are in AP, then

    Text Solution

    |

  11. The value of (1)/(log(3)pi) + (1)/(log(4)pi) is

    Text Solution

    |

  12. If log(a)m = x, then log(1//a) ""(1)/(m) is equal to

    Text Solution

    |

  13. If f(a) = log"" (1 + a)/(1-a) then f((2a)/(1+a^(2))) is equal to

    Text Solution

    |

  14. The value of 7 log(a) ""(16)/(15) + 5log(a) ""(25)/(24) + 3 log(a) ""(...

    Text Solution

    |

  15. (1)/((log(a)bc)+1)+(1)/((log(b)ac)+1)+(1)/((log(c)ab)+1) is equal to

    Text Solution

    |

  16. If log ((a + b)/(2)) = (1)/(2) (log a + log b), then a is equal to

    Text Solution

    |

  17. (1 + log(n)m) * log(mn) x is equal to

    Text Solution

    |

  18. log(a)b = log(b)c = log(c)a, then a, b and c are such that

    Text Solution

    |

  19. If log (3+ 4 + k) = log 3 + log 4 + log k, then the value of k is

    Text Solution

    |

  20. If (log)(10)2=0. 30103 ,(log)(10)3=0. 47712 , then find the number of ...

    Text Solution

    |

  21. (log (x^(3) + 3x^(2) + 3x + 1))/(log (x^(2) + 2x + 1)) is equal to

    Text Solution

    |