Home
Class 12
MATHS
IF x = log(2a)a, y = log(3a) 2a , z = lo...

IF `x = log_(2a)a, y = log_(3a) 2a , z = log_(4a)3a`, then the value of `xyz + 1` is

A

2yz

B

2zx

C

xyz

D

1

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( xyz + 1 \) where: \[ x = \log_{2a} a, \quad y = \log_{3a} 2a, \quad z = \log_{4a} 3a \] ### Step 1: Rewrite the logarithms using the change of base formula Using the change of base formula, we can express each logarithm in terms of natural logarithms (ln): \[ x = \frac{\ln a}{\ln(2a)} = \frac{\ln a}{\ln 2 + \ln a} \] \[ y = \frac{\ln(2a)}{\ln(3a)} = \frac{\ln 2 + \ln a}{\ln 3 + \ln a} \] \[ z = \frac{\ln(3a)}{\ln(4a)} = \frac{\ln 3 + \ln a}{\ln 4 + \ln a} \] ### Step 2: Substitute \( x, y, z \) into \( xyz + 1 \) Now we can substitute these expressions into \( xyz \): \[ xyz = \left(\frac{\ln a}{\ln 2 + \ln a}\right) \left(\frac{\ln 2 + \ln a}{\ln 3 + \ln a}\right) \left(\frac{\ln 3 + \ln a}{\ln 4 + \ln a}\right) \] Notice that the \( \ln 2 + \ln a \) in the numerator of \( y \) cancels with the denominator of \( x \): \[ xyz = \frac{\ln a}{\ln 3 + \ln a} \cdot \frac{\ln 3 + \ln a}{\ln 4 + \ln a} \] Now, the \( \ln 3 + \ln a \) in the numerator of \( z \) cancels with the denominator of the previous fraction: \[ xyz = \frac{\ln a}{\ln 4 + \ln a} \] ### Step 3: Add 1 to \( xyz \) Now we need to compute \( xyz + 1 \): \[ xyz + 1 = \frac{\ln a}{\ln 4 + \ln a} + 1 \] To add these fractions, we need a common denominator: \[ = \frac{\ln a + (\ln 4 + \ln a)}{\ln 4 + \ln a} = \frac{\ln a + \ln 4 + \ln a}{\ln 4 + \ln a} = \frac{2\ln a + \ln 4}{\ln 4 + \ln a} \] ### Step 4: Simplify the expression Notice that \( \ln 4 = \ln(2^2) = 2\ln 2 \): \[ = \frac{2\ln a + 2\ln 2}{\ln 4 + \ln a} = \frac{2(\ln a + \ln 2)}{\ln 4 + \ln a} \] ### Final Result Thus, the expression simplifies to: \[ xyz + 1 = \frac{2\ln(2a)}{\ln(4a)} \] This concludes the solution.
Promotional Banner

Topper's Solved these Questions

  • LOGARITHMS

    ARIHANT PUBLICATION JHARKHAND|Exercise Exam Booster For Cracking JEE|20 Videos
  • INDICES AND SURDS

    ARIHANT PUBLICATION JHARKHAND|Exercise Exam Booster (For Cracking Exam)|20 Videos
  • MODEL SOLVED PAPER

    ARIHANT PUBLICATION JHARKHAND|Exercise SECTION-I : MATHEMATICS|50 Videos

Similar Questions

Explore conceptually related problems

If p = log_(2a), a, q = log_(3a) 2a and r = log_(4a), 3a , then find the value of qr(2-p).

If x=log_(2a)a,y=log_(3a)2a and z=log_(4a)3a then prove that xyz+1=2yz

If x=(log)_(2a)a,y=(log)_(3a)2a,z=(log)_(4a)3a, prove that 1+xyz=2yz

log_((1)/(4))z=log_(2)6,t, then the value of z is

If log_(2a)a=X,log_(3a)2a=y, and log_(4a)3a= z,then xyz-2yz is equal to

log_(8)y=-(1)/(log_(3)2), then the value of y is

Let log_(c)ab=x,log_(a)bc=y and log_(b)ca=z Find the value of (xyz-x-y-z)

ARIHANT PUBLICATION JHARKHAND-LOGARITHMS -Exam Booster For Cracking JEE
  1. IF x = log(2a)a, y = log(3a) 2a , z = log(4a)3a, then the value of xyz...

    Text Solution

    |

  2. log(5sqrt(5))5 is equal to

    Text Solution

    |

  3. The value of log(6) (216sqrt(6)) is

    Text Solution

    |

  4. the value of (0.05)^(log(sqrt(20))(0.1+0.01+0.001+....)

    Text Solution

    |

  5. IF a = log(24) 12, b = log(36) 24, c = log(48)36, then 1 + abc is equ...

    Text Solution

    |

  6. Find the value of 81^((1//(log)5 3))+27^log36+3^((4/((log)7)9))

    Text Solution

    |

  7. (log(8)17)/(log(9)23) - (log(2sqrt(2))17)/(log(3)23) is equal to

    Text Solution

    |

  8. If log(8)m + log(6) (1)/(6) = (2)/(3), then m is equal to

    Text Solution

    |

  9. If log(2)x xx log(2)"" (x)/(16) + 4 = 0, then x is equal to

    Text Solution

    |

  10. If log x, log y and log z are in AP, then

    Text Solution

    |

  11. The value of (1)/(log(3)pi) + (1)/(log(4)pi) is

    Text Solution

    |

  12. If log(a)m = x, then log(1//a) ""(1)/(m) is equal to

    Text Solution

    |

  13. If f(a) = log"" (1 + a)/(1-a) then f((2a)/(1+a^(2))) is equal to

    Text Solution

    |

  14. The value of 7 log(a) ""(16)/(15) + 5log(a) ""(25)/(24) + 3 log(a) ""(...

    Text Solution

    |

  15. (1)/((log(a)bc)+1)+(1)/((log(b)ac)+1)+(1)/((log(c)ab)+1) is equal to

    Text Solution

    |

  16. If log ((a + b)/(2)) = (1)/(2) (log a + log b), then a is equal to

    Text Solution

    |

  17. (1 + log(n)m) * log(mn) x is equal to

    Text Solution

    |

  18. log(a)b = log(b)c = log(c)a, then a, b and c are such that

    Text Solution

    |

  19. If log (3+ 4 + k) = log 3 + log 4 + log k, then the value of k is

    Text Solution

    |

  20. If (log)(10)2=0. 30103 ,(log)(10)3=0. 47712 , then find the number of ...

    Text Solution

    |

  21. (log (x^(3) + 3x^(2) + 3x + 1))/(log (x^(2) + 2x + 1)) is equal to

    Text Solution

    |