Home
Class 12
MATHS
If a^(2) + b^(2) = 7ab, then the vlaue o...

If `a^(2) + b^(2) = 7ab`, then the vlaue of `log [(1)/(3) (a + b)]` is

A

`(1)/(2) log a log b`

B

`(1)/(2) log ab`

C

`(1)/(2) [log a + log b]`

D

`(1)/(2) [log a - log b]`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given equation: **Step 1: Rewrite the equation** Given: \[ a^2 + b^2 = 7ab \] **Step 2: Use the identity for \( (a + b)^2 \)** We know that: \[ (a + b)^2 = a^2 + b^2 + 2ab \] Substituting the value of \( a^2 + b^2 \): \[ (a + b)^2 = 7ab + 2ab = 9ab \] **Step 3: Take the square root** Taking the square root of both sides gives: \[ a + b = 3\sqrt{ab} \] **Step 4: Find \( \frac{1}{3}(a + b) \)** Now, we calculate: \[ \frac{1}{3}(a + b) = \frac{1}{3}(3\sqrt{ab}) = \sqrt{ab} \] **Step 5: Take the logarithm** We need to find: \[ \log\left(\frac{1}{3}(a + b)\right) = \log(\sqrt{ab}) \] Using the properties of logarithms: \[ \log(\sqrt{ab}) = \frac{1}{2} \log(ab) \] **Step 6: Expand \( \log(ab) \)** Using the property of logarithms: \[ \log(ab) = \log(a) + \log(b) \] Thus, \[ \log\left(\frac{1}{3}(a + b)\right) = \frac{1}{2}(\log(a) + \log(b)) \] **Final Result:** The value of \( \log\left(\frac{1}{3}(a + b)\right) \) is: \[ \frac{1}{2}(\log(a) + \log(b)) \] ---
Promotional Banner

Topper's Solved these Questions

  • LOGARITHMS

    ARIHANT PUBLICATION JHARKHAND|Exercise Exam Booster For Cracking JEE|20 Videos
  • INDICES AND SURDS

    ARIHANT PUBLICATION JHARKHAND|Exercise Exam Booster (For Cracking Exam)|20 Videos
  • MODEL SOLVED PAPER

    ARIHANT PUBLICATION JHARKHAND|Exercise SECTION-I : MATHEMATICS|50 Videos

Similar Questions

Explore conceptually related problems

If a^(2) + b^(2) = 7ab , then find the value of log_(2)((a+b)/(3))

If a^(2)+b^(2)=7ab then the value of is log((a+b)/(3))-(log a)/(2)-(log b)/(2)

If a^(2) + b^(2) = 7 ab , then log (( a + b)/(3 )) equals

if a^(2)+4b^(2)=12ab, then log(a+2b)

If 9a^(2)+4b^(2)=18ab, then log(3a+2b)=

If "log"_(a) ab = x, then the value of "log"_(b)ab, is

If a^(2) + b^(2) = 7 ab," prove that " log((a+b)/3) = 1/2 (log a + log b) .

ARIHANT PUBLICATION JHARKHAND-LOGARITHMS -Exam Booster For Cracking JEE
  1. If a^(2) + b^(2) = 7ab, then the vlaue of log [(1)/(3) (a + b)] is

    Text Solution

    |

  2. log(5sqrt(5))5 is equal to

    Text Solution

    |

  3. The value of log(6) (216sqrt(6)) is

    Text Solution

    |

  4. the value of (0.05)^(log(sqrt(20))(0.1+0.01+0.001+....)

    Text Solution

    |

  5. IF a = log(24) 12, b = log(36) 24, c = log(48)36, then 1 + abc is equ...

    Text Solution

    |

  6. Find the value of 81^((1//(log)5 3))+27^log36+3^((4/((log)7)9))

    Text Solution

    |

  7. (log(8)17)/(log(9)23) - (log(2sqrt(2))17)/(log(3)23) is equal to

    Text Solution

    |

  8. If log(8)m + log(6) (1)/(6) = (2)/(3), then m is equal to

    Text Solution

    |

  9. If log(2)x xx log(2)"" (x)/(16) + 4 = 0, then x is equal to

    Text Solution

    |

  10. If log x, log y and log z are in AP, then

    Text Solution

    |

  11. The value of (1)/(log(3)pi) + (1)/(log(4)pi) is

    Text Solution

    |

  12. If log(a)m = x, then log(1//a) ""(1)/(m) is equal to

    Text Solution

    |

  13. If f(a) = log"" (1 + a)/(1-a) then f((2a)/(1+a^(2))) is equal to

    Text Solution

    |

  14. The value of 7 log(a) ""(16)/(15) + 5log(a) ""(25)/(24) + 3 log(a) ""(...

    Text Solution

    |

  15. (1)/((log(a)bc)+1)+(1)/((log(b)ac)+1)+(1)/((log(c)ab)+1) is equal to

    Text Solution

    |

  16. If log ((a + b)/(2)) = (1)/(2) (log a + log b), then a is equal to

    Text Solution

    |

  17. (1 + log(n)m) * log(mn) x is equal to

    Text Solution

    |

  18. log(a)b = log(b)c = log(c)a, then a, b and c are such that

    Text Solution

    |

  19. If log (3+ 4 + k) = log 3 + log 4 + log k, then the value of k is

    Text Solution

    |

  20. If (log)(10)2=0. 30103 ,(log)(10)3=0. 47712 , then find the number of ...

    Text Solution

    |

  21. (log (x^(3) + 3x^(2) + 3x + 1))/(log (x^(2) + 2x + 1)) is equal to

    Text Solution

    |