Home
Class 12
MATHS
If f(a) = log"" (1 + a)/(1-a) then f((2a...

If `f(a) = log"" (1 + a)/(1-a)` then `f((2a)/(1+a^(2)))` is equal to

A

0

B

1

C

`f(a)`

D

`2f(a)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate \( f\left(\frac{2a}{1 + a^2}\right) \) given that \( f(a) = \log\left(\frac{1 + a}{1 - a}\right) \). ### Step-by-Step Solution: 1. **Substituting the Value into the Function**: \[ f\left(\frac{2a}{1 + a^2}\right) = \log\left(\frac{1 + \frac{2a}{1 + a^2}}{1 - \frac{2a}{1 + a^2}}\right) \] 2. **Simplifying the Numerator**: \[ 1 + \frac{2a}{1 + a^2} = \frac{(1 + a^2) + 2a}{1 + a^2} = \frac{1 + 2a + a^2}{1 + a^2} = \frac{(a + 1)^2}{1 + a^2} \] 3. **Simplifying the Denominator**: \[ 1 - \frac{2a}{1 + a^2} = \frac{(1 + a^2) - 2a}{1 + a^2} = \frac{1 - 2a + a^2}{1 + a^2} = \frac{(1 - a)^2}{1 + a^2} \] 4. **Combining the Results**: \[ f\left(\frac{2a}{1 + a^2}\right) = \log\left(\frac{\frac{(a + 1)^2}{1 + a^2}}{\frac{(1 - a)^2}{1 + a^2}}\right) = \log\left(\frac{(a + 1)^2}{(1 - a)^2}\right) \] 5. **Using Logarithmic Properties**: \[ \log\left(\frac{(a + 1)^2}{(1 - a)^2}\right) = \log\left((a + 1)^2\right) - \log\left((1 - a)^2\right) = 2\log(a + 1) - 2\log(1 - a) \] \[ = 2\left(\log(a + 1) - \log(1 - a)\right) = 2f(a) \] ### Final Result: Thus, we have: \[ f\left(\frac{2a}{1 + a^2}\right) = 2f(a) \]
Promotional Banner

Topper's Solved these Questions

  • LOGARITHMS

    ARIHANT PUBLICATION JHARKHAND|Exercise Exam Booster For Cracking JEE|20 Videos
  • INDICES AND SURDS

    ARIHANT PUBLICATION JHARKHAND|Exercise Exam Booster (For Cracking Exam)|20 Videos
  • MODEL SOLVED PAPER

    ARIHANT PUBLICATION JHARKHAND|Exercise SECTION-I : MATHEMATICS|50 Videos

Similar Questions

Explore conceptually related problems

If f(x) = log ((1+x)/(1-x)) , then f((2x)/(1+x^(2))) is equal to

If f(x) = log_(e) ((1-x)/(1+x)) , then f((2x)/(1 + x^(2))) is equal to :

If f(x)=log((1+x)/(1-x)) and then f((2x)/(1+x^(2))) is equal to {f(x)}^(2) (b) {f(x)}^(3)(c)2f(x)(d)3f(x)

If f(x)=log((1+x)/(1-x)) , "then f "((2x)/(1+x^(2))) is equal to

if f(x)=log_(2)((1-x)/(1+x)) then f((2x)/(1+x^(2))) is equal to (A) f(x) (B) 2f(x) (C) -2f(x) (D) (f(x))^(2)

If f(x)=log_(e)((1-x)/(1+x)),|x|<1, then f((2x)/(1+x^(2))) is equal to:

f(a) = log((1-a)/(1+a)) for 0 < a < 1 then f((2a)/(1+a))

ARIHANT PUBLICATION JHARKHAND-LOGARITHMS -Exam Booster For Cracking JEE
  1. log(5sqrt(5))5 is equal to

    Text Solution

    |

  2. The value of log(6) (216sqrt(6)) is

    Text Solution

    |

  3. the value of (0.05)^(log(sqrt(20))(0.1+0.01+0.001+....)

    Text Solution

    |

  4. IF a = log(24) 12, b = log(36) 24, c = log(48)36, then 1 + abc is equ...

    Text Solution

    |

  5. Find the value of 81^((1//(log)5 3))+27^log36+3^((4/((log)7)9))

    Text Solution

    |

  6. (log(8)17)/(log(9)23) - (log(2sqrt(2))17)/(log(3)23) is equal to

    Text Solution

    |

  7. If log(8)m + log(6) (1)/(6) = (2)/(3), then m is equal to

    Text Solution

    |

  8. If log(2)x xx log(2)"" (x)/(16) + 4 = 0, then x is equal to

    Text Solution

    |

  9. If log x, log y and log z are in AP, then

    Text Solution

    |

  10. The value of (1)/(log(3)pi) + (1)/(log(4)pi) is

    Text Solution

    |

  11. If log(a)m = x, then log(1//a) ""(1)/(m) is equal to

    Text Solution

    |

  12. If f(a) = log"" (1 + a)/(1-a) then f((2a)/(1+a^(2))) is equal to

    Text Solution

    |

  13. The value of 7 log(a) ""(16)/(15) + 5log(a) ""(25)/(24) + 3 log(a) ""(...

    Text Solution

    |

  14. (1)/((log(a)bc)+1)+(1)/((log(b)ac)+1)+(1)/((log(c)ab)+1) is equal to

    Text Solution

    |

  15. If log ((a + b)/(2)) = (1)/(2) (log a + log b), then a is equal to

    Text Solution

    |

  16. (1 + log(n)m) * log(mn) x is equal to

    Text Solution

    |

  17. log(a)b = log(b)c = log(c)a, then a, b and c are such that

    Text Solution

    |

  18. If log (3+ 4 + k) = log 3 + log 4 + log k, then the value of k is

    Text Solution

    |

  19. If (log)(10)2=0. 30103 ,(log)(10)3=0. 47712 , then find the number of ...

    Text Solution

    |

  20. (log (x^(3) + 3x^(2) + 3x + 1))/(log (x^(2) + 2x + 1)) is equal to

    Text Solution

    |