Home
Class 12
MATHS
The value of 7 log(a) ""(16)/(15) + 5log...

The value of `7 log_(a) ""(16)/(15) + 5log_(a) ""(25)/(24) + 3 log_(a) ""(81)/(80)` is

A

`log_(a)5`

B

`log_(a)3`

C

`log_(a)2`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \( 7 \log_a \left( \frac{16}{15} \right) + 5 \log_a \left( \frac{25}{24} \right) + 3 \log_a \left( \frac{81}{80} \right) \), we will follow these steps: ### Step 1: Rewrite the logarithmic expressions We can express the fractions in terms of their prime factorization: - \( 16 = 2^4 \) - \( 15 = 3 \times 5 \) - \( 25 = 5^2 \) - \( 24 = 2^3 \times 3 \) - \( 81 = 3^4 \) - \( 80 = 2^4 \times 5 \) Thus, we rewrite the logarithmic expressions as: \[ 7 \log_a \left( \frac{2^4}{3 \times 5} \right) + 5 \log_a \left( \frac{5^2}{2^3 \times 3} \right) + 3 \log_a \left( \frac{3^4}{2^4 \times 5} \right) \] ### Step 2: Apply the logarithmic property \( x \log_a b = \log_a (b^x) \) Using the property \( x \log_a b = \log_a (b^x) \), we can rewrite the expression: \[ \log_a \left( \left( \frac{2^4}{3 \times 5} \right)^7 \right) + \log_a \left( \left( \frac{5^2}{2^3 \times 3} \right)^5 \right) + \log_a \left( \left( \frac{3^4}{2^4 \times 5} \right)^3 \right) \] ### Step 3: Combine the logarithms Using the property \( \log_a b + \log_a c = \log_a (bc) \): \[ \log_a \left( \left( \frac{2^4}{3 \times 5} \right)^7 \cdot \left( \frac{5^2}{2^3 \times 3} \right)^5 \cdot \left( \frac{3^4}{2^4 \times 5} \right)^3 \right) \] ### Step 4: Simplify the expression inside the logarithm Calculating each term: 1. \( \left( \frac{2^4}{3 \times 5} \right)^7 = \frac{2^{28}}{3^7 \times 5^7} \) 2. \( \left( \frac{5^2}{2^3 \times 3} \right)^5 = \frac{5^{10}}{2^{15} \times 3^5} \) 3. \( \left( \frac{3^4}{2^4 \times 5} \right)^3 = \frac{3^{12}}{2^{12} \times 5^3} \) Now combine these: \[ \frac{2^{28}}{3^7 \times 5^7} \cdot \frac{5^{10}}{2^{15} \times 3^5} \cdot \frac{3^{12}}{2^{12} \times 5^3} \] ### Step 5: Combine the powers of each base Combining the powers: - For \(2\): \(28 - 15 - 12 = 1\) - For \(3\): \(0 + 12 - 7 - 5 = 0\) - For \(5\): \(10 - 7 - 3 = 0\) Thus, we have: \[ \frac{2^1 \cdot 3^0 \cdot 5^0}{1} = 2 \] ### Step 6: Final result Now we can write: \[ \log_a(2) \] Thus, the final value of the expression is: \[ \log_a(2) \]
Promotional Banner

Topper's Solved these Questions

  • LOGARITHMS

    ARIHANT PUBLICATION JHARKHAND|Exercise Exam Booster For Cracking JEE|20 Videos
  • INDICES AND SURDS

    ARIHANT PUBLICATION JHARKHAND|Exercise Exam Booster (For Cracking Exam)|20 Videos
  • MODEL SOLVED PAPER

    ARIHANT PUBLICATION JHARKHAND|Exercise SECTION-I : MATHEMATICS|50 Videos

Similar Questions

Explore conceptually related problems

If 7"log"_(a)(16)/(15)+5"log"_(a)(25)/(24)+3"log"_(a)(81)/(80)=8 , then a=

Givenlog (2)=0.3010 and log_(10)(3)=0.4771 find the value of 7log_(10)((10)/(9))-2log_(10)((25)/(24))+3log_(10)((81)/(80))

7 log (10)/(9) + 3 log""(81)/(80) =

ARIHANT PUBLICATION JHARKHAND-LOGARITHMS -Exam Booster For Cracking JEE
  1. log(5sqrt(5))5 is equal to

    Text Solution

    |

  2. The value of log(6) (216sqrt(6)) is

    Text Solution

    |

  3. the value of (0.05)^(log(sqrt(20))(0.1+0.01+0.001+....)

    Text Solution

    |

  4. IF a = log(24) 12, b = log(36) 24, c = log(48)36, then 1 + abc is equ...

    Text Solution

    |

  5. Find the value of 81^((1//(log)5 3))+27^log36+3^((4/((log)7)9))

    Text Solution

    |

  6. (log(8)17)/(log(9)23) - (log(2sqrt(2))17)/(log(3)23) is equal to

    Text Solution

    |

  7. If log(8)m + log(6) (1)/(6) = (2)/(3), then m is equal to

    Text Solution

    |

  8. If log(2)x xx log(2)"" (x)/(16) + 4 = 0, then x is equal to

    Text Solution

    |

  9. If log x, log y and log z are in AP, then

    Text Solution

    |

  10. The value of (1)/(log(3)pi) + (1)/(log(4)pi) is

    Text Solution

    |

  11. If log(a)m = x, then log(1//a) ""(1)/(m) is equal to

    Text Solution

    |

  12. If f(a) = log"" (1 + a)/(1-a) then f((2a)/(1+a^(2))) is equal to

    Text Solution

    |

  13. The value of 7 log(a) ""(16)/(15) + 5log(a) ""(25)/(24) + 3 log(a) ""(...

    Text Solution

    |

  14. (1)/((log(a)bc)+1)+(1)/((log(b)ac)+1)+(1)/((log(c)ab)+1) is equal to

    Text Solution

    |

  15. If log ((a + b)/(2)) = (1)/(2) (log a + log b), then a is equal to

    Text Solution

    |

  16. (1 + log(n)m) * log(mn) x is equal to

    Text Solution

    |

  17. log(a)b = log(b)c = log(c)a, then a, b and c are such that

    Text Solution

    |

  18. If log (3+ 4 + k) = log 3 + log 4 + log k, then the value of k is

    Text Solution

    |

  19. If (log)(10)2=0. 30103 ,(log)(10)3=0. 47712 , then find the number of ...

    Text Solution

    |

  20. (log (x^(3) + 3x^(2) + 3x + 1))/(log (x^(2) + 2x + 1)) is equal to

    Text Solution

    |