Home
Class 12
MATHS
Prove that : Det[[x,x^2,x^3],[y,y^2,y^3]...

Prove that : `Det[[x,x^2,x^3],[y,y^2,y^3],[z,z^2,z^3]]=xyz(x-y)(y-z)(z-x)`

Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    MAHAVEER PUBLICATION|Exercise QUESTION BANK|100 Videos
  • DIFFERENTIATION OR DERIVATIVE OF A FUNCTION

    MAHAVEER PUBLICATION|Exercise QUESTION BANK|223 Videos

Similar Questions

Explore conceptually related problems

Prove that |[x,x^(2),x^(4)],[y,y^(2),y^(4)],[z,z^(2),z^(4)]|=xyz(x-y)(y-z)(z-x)(x+y+z)

Prove that [[x, x^2 , 1+px^3], [y, y^2, 1+py^3] ,[z, z^2, 1+pz^3]] = (1+pxyz)(x-y)(y-z)(z-x)

Prove the following : |{:(x,y,z),(x^(2),y^(2),z^(2)),(x^(3),y^(3),z^(3)):}|=|{:(x,x^(2),x^(3)),(y,y^(2),y^(3)),(z,z^(2),z^(3)):}|=xyz(x-y)(y-z)(z-x)

Prove the following using properties of determinants det[[x,y,zx^(2),y^(2),z^(2)y+z,z+x,x+y]]=(x-y)(y-z)(z-x)(x+y+z)]|=

Prove that : |{:(1,1,1),(x,y,z),(x^(3),y^(3),z^(3)):}|=(x-y)(y-z)(x+y+z)

Without expanding as far as possible, prove that |{:(1,1,1),(x,y,z),(x^(3),y^(3),z^(3)):}| = (x-y)(y-z)(z-x)(x+y+z) .

Show that : |x y z x^2y^2z^2x^3y^3z^3|=x y z(x-y)(y-z)(z-x)dot

Prove the identities: |[z, x, y],[ z^2,x^2,y^2],[z^4,x^4,y^4]|=|[x, y, z],[ x^2,y^2,z^2],[x^4,y^4,z^4]|=|[x^2,y^2,z^2],[x^4,y^4,z^4],[x, y, z]| =x y z (x-y)(y-z)(z-x)(x+y+z)

Show that abs([y+z ,x,x],[y,z+x,y],[z,z,x+y])=4xyz

If x,y,z are different and Delta=det[[x,x^(2),x^(3)-1y,y^(2),y^(3)-1z,z^(2),z^(3)-1]]=0, then using properties of determinants,show that xyz=1

MAHAVEER PUBLICATION-DETERMINANTS-QUESTION BANK
  1. ([1,1,1],[a,b,c],[a^2,b^2,c^2])=(a-b)(b-c)(c-a)

    Text Solution

    |

  2. (iii) सारणिक का बिना विस्तार किये हुए सिद्ध करें कि |{:(a,b,c),(x,y,z)...

    Text Solution

    |

  3. Prove that : Det[[x,x^2,x^3],[y,y^2,y^3],[z,z^2,z^3]]=xyz(x-y)(y-z)(z-...

    Text Solution

    |

  4. Show that abs([y+z ,x,x],[y,z+x,y],[z,z,x+y])=4xyz

    Text Solution

    |

  5. Show that abs([x,b,c],[x,b,y],[y,b,c])=b(x-y)(c-y)

    Text Solution

    |

  6. Prove that the determinate abs([x,sintheta,costheta],[-sintheta,-x,1],...

    Text Solution

    |

  7. Without expanding the determinant prove that abs([a,a^2,bc],[b,b^2,...

    Text Solution

    |

  8. Solve the equation |x+a xxxx+a xxxx+a|=0, a!= 0

    Text Solution

    |

  9. Find minors and cofactors of all the elements of the determinant abs([...

    Text Solution

    |

  10. Solve by Cramer's rule: 3x-2y=4 6x-y=11

    Text Solution

    |

  11. Solve by Cramer's rule: 3x+2y=4 8x+3y=13

    Text Solution

    |

  12. Solve by Cramer's rule: 3x-2y=4 x-4y=-2

    Text Solution

    |

  13. Solve by cramer's rule : 3x-5y=21 5x+y=7

    Text Solution

    |

  14. Solve by cramer's rule : x+y+z=3 2x-y+3z=4 x+2y-z=2

    Text Solution

    |

  15. Evaluate the determinates abs([2,3],[1,7])

    Text Solution

    |

  16. Evaluate the determinates abs([-costheta,-sin theta],[sintheta,-costhe...

    Text Solution

    |

  17. Evaluate the determinatesabs([3,-4,5],[1,1,-2],[2,3,1])

    Text Solution

    |

  18. Evaluate the determinates abs([2,-1,-2],[0,2,-1],[3,-5,0])

    Text Solution

    |

  19. Find the value of x is abs([3,x],[x,1])=abs([3,2],[4,1])

    Text Solution

    |

  20. Find the value of x is abs([2,3],[4,5])=abs([x,3],[2x,5])

    Text Solution

    |