Home
Class 12
MATHS
Find (dy)/(dx) if y=sqrt(1+x^2)...

Find (dy)/(dx) if
`y=sqrt(1+x^2)`

Text Solution

Verified by Experts

`y=sqrt(1+x^2)=sqrtt`, where `t=1+x^2`
`therefore dy/dx=dy/dt.dt/dx`
`d/dt(sqrtt).d/dx(1+x^2)`
`=1/(2sqrtt).2x=x/(sqrt(1+x^2)`
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    MAHAVEER PUBLICATION|Exercise QUESTION BANK|51 Videos
  • FUNCTION

    MAHAVEER PUBLICATION|Exercise QUESTION BANK|115 Videos

Similar Questions

Explore conceptually related problems

Find (dy)/(dx), if y=(sqrt(sin x))/(sin sqrt(x))

Find the (dy)/(dx) of sqrt(1-x^2)+sqrt(1-y^2)=a(x-y)

Find (dy)/(dx)" if y"=sqrt(sin^(-1) sqrt(x)) .

Find (dy)/(dx) of y=(sqrt(x)(2x+3)^2)/(sqrt(x+1))

Find (dy)/(dx) , when y=sqrt(x)

Find (dy)/(dx) if y=tan^(-1)((sqrt(1+x^(2)-1))/(x)), where x!=0

Find (dy)/(dx), if y=sin^(-1)[x sqrt(1-x)-sqrt(x)sqrt(1-x^(2))]

Find (dy)/(dx) for y=log(x+sqrt(a^(2)+x^(2)))