Home
Class 12
MATHS
Find (dy)/(dx) if y=(x^2+x+1)^4...

Find (dy)/(dx) if
`y=(x^2+x+1)^4`

Text Solution

Verified by Experts

`y=(x^2+x+1)^4`
`thereforedy/dx=4(x^2+x+1)^(4-1)d/dx(x^2+x+1)`
`=4(x^2+x+1)^3(2x+1)`
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    MAHAVEER PUBLICATION|Exercise QUESTION BANK|51 Videos
  • FUNCTION

    MAHAVEER PUBLICATION|Exercise QUESTION BANK|115 Videos

Similar Questions

Explore conceptually related problems

Find (dy)/(dx) if y=2^(x^(x))

Find (dy)/(dx) ,if y=(x^(2)+1)(x^(2)-1)

Find (dy)/(dx) if "y=(x+1)/(x)

Find (dy)/(dx) if: y=(1+x^2)^(1/2)

find (dy)/(dx) if y=2(3x-2),x=4

1.Find (dy)/(dx) , if y=x^(2)+3^(x)

find dy/dx if y=x/(x^2+1)

Find (dy)/(dx) if y = (x+1/x)^(1/x)

Find (dy)/(dx) if x^2+y^2=4xy

Find dy/dx if y=x^2+2x+1