Home
Class 12
MATHS
If f(x)=(1+x)(1+x^2)(1+x^3)(1+x^4), then...

If `f(x)=(1+x)(1+x^2)(1+x^3)(1+x^4)`, then f'(0)=1

Text Solution

AI Generated Solution

To find \( f'(0) \) for the function \( f(x) = (1+x)(1+x^2)(1+x^3)(1+x^4) \), we will use logarithmic differentiation. Here’s a step-by-step solution: ### Step 1: Take the logarithm of both sides We start by taking the natural logarithm of \( f(x) \): \[ \log f(x) = \log((1+x)(1+x^2)(1+x^3)(1+x^4)) \] ...
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    MAHAVEER PUBLICATION|Exercise QUESTION BANK|51 Videos
  • FUNCTION

    MAHAVEER PUBLICATION|Exercise QUESTION BANK|115 Videos

Similar Questions

Explore conceptually related problems

If f(x) = (1 + x) (1 + x^(2)) (1 + x^(4)) (1 + x^(8)) , then f'(1) is

If f(x)=x^2+(1)/(x^2), g(x)=x^4+(1)/(x^4) and a+(1)/(a)=3 , then the respectively values of f(a) and g(a) are

If f'(x)=(1)/((1+x^(2))^(3//2)) and f(0)=0, then f(1) is equal to :

If f(x)=log((1+x)/(1-x)), then (a) f(x_(1))f(x)=f(x_(1)+x_(2))(b)f(x+2)-2f(x+1)+f(x)=0 (c) f(x)+f(x+1)=f(x^(2)+x)(d)f(x_(1))+f(x_(2))=f((x_(1)+x_(2))/(1+x_(1)x_(2)))

" (1) If "f(x+(1)/(x))=x^(2)+(1)/(x^(2))(x!=0);" then find the value of "f(x)

If f(x)=(1)/(x)-1 where x ne 0, then: f(x)+(1)/(f(x+1))=

If f(x)=(x-1)/(2x^(2)-7x+5) for x!=1 and f(x)=-(1)/(3) for x=1 then f'(1)=

Let f : R to and f (x) = (x (x^(4) + 1) (x+1) +x ^(4)+2)/(x^(2) +x+1), then f (x) is :

If f'(x)=(1)/(x)+(1)/(x^(2)+1) and f(1)=(pi)/(4), find f(x)