Home
Class 12
MATHS
If f(x)=7x-8, then f'(3)=...

If f(x)=7x-8, then f'(3)=

Text Solution

AI Generated Solution

To find \( f'(3) \) for the function \( f(x) = 7x - 8 \), we will follow these steps: ### Step 1: Differentiate the function We start by differentiating the function \( f(x) \). The derivative \( f'(x) \) is defined as the rate of change of the function with respect to \( x \). \[ f'(x) = \frac{d}{dx}(7x - 8) \] ...
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    MAHAVEER PUBLICATION|Exercise QUESTION BANK|51 Videos
  • FUNCTION

    MAHAVEER PUBLICATION|Exercise QUESTION BANK|115 Videos

Similar Questions

Explore conceptually related problems

Let f(x) be a continuous & differentiable function on R satisfying f(-x)=f(x)&f(3+x)=f(3-x)AA x in R . If f'(1)=-5 then f'(7) =

If f(x) is a polynomial in x(>0) satisfying the equation f(x)+f(1/x)-f(x)f(1/x) and f(2)=-7 , then f(3)=

If f(x)=2x^(3)+7x-5 then f^(-1)(4) is :

If f(x)= x^2+7x+10 then f(2) =?

If f(x)=4x^(3)+7 , then f^(')(x)=…………………. .

If f(x) = x^3 , then find f^(-1 )( 8 )

If f(x) is a polynomial in x satisfying the equation f(x)+f((1)/(x))=f(x)f((1)/(x)) and f(2)=-7 then f(3)=

If f(x) is continuous at x=3 , where f(x)=(x^(2)-7x+12)/(x^(2)-5x+6) ,for x!=3 , then f(3)=

If f(x) is continuous at x=7 , where f(x)=(log x-log 7)/(x-7) , for x!=7 , then f(7)=

f(x)=int(5x^8+7x^6)/(x^2+1+2x^7)^2dx , if f(0)=0 then find f(1)=1/k. Then k is