Home
Class 12
MATHS
Choose the correct Answer of the Followi...

Choose the correct Answer of the Following Questions : `int_0^(pi/2) sqrtcosx/(sqrtcosx + sqrtsinx) dx =`

A

0

B

`pi/2`

C

`pi/4`

D

`2pi`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the definite integral \( I = \int_0^{\frac{\pi}{2}} \frac{\sqrt{\cos x}}{\sqrt{\cos x} + \sqrt{\sin x}} \, dx \), we can use a symmetry property of definite integrals. Here’s the step-by-step solution: ### Step 1: Define the integral Let \[ I = \int_0^{\frac{\pi}{2}} \frac{\sqrt{\cos x}}{\sqrt{\cos x} + \sqrt{\sin x}} \, dx. \] ### Step 2: Use the substitution \( x = \frac{\pi}{2} - t \) We will apply the substitution \( x = \frac{\pi}{2} - t \). Then, \( dx = -dt \) and the limits change as follows: - When \( x = 0 \), \( t = \frac{\pi}{2} \). - When \( x = \frac{\pi}{2} \), \( t = 0 \). Thus, we have: \[ I = \int_{\frac{\pi}{2}}^0 \frac{\sqrt{\cos\left(\frac{\pi}{2} - t\right)}}{\sqrt{\cos\left(\frac{\pi}{2} - t\right)} + \sqrt{\sin\left(\frac{\pi}{2} - t\right)}} (-dt). \] ### Step 3: Simplify the integral Using the trigonometric identities \( \cos\left(\frac{\pi}{2} - t\right) = \sin t \) and \( \sin\left(\frac{\pi}{2} - t\right) = \cos t \), we can rewrite the integral: \[ I = \int_0^{\frac{\pi}{2}} \frac{\sqrt{\sin t}}{\sqrt{\sin t} + \sqrt{\cos t}} \, dt. \] ### Step 4: Combine the two integrals Now we have two expressions for \( I \): 1. \( I = \int_0^{\frac{\pi}{2}} \frac{\sqrt{\cos x}}{\sqrt{\cos x} + \sqrt{\sin x}} \, dx \) 2. \( I = \int_0^{\frac{\pi}{2}} \frac{\sqrt{\sin x}}{\sqrt{\sin x} + \sqrt{\cos x}} \, dx \) Adding these two equations gives: \[ 2I = \int_0^{\frac{\pi}{2}} \left( \frac{\sqrt{\cos x}}{\sqrt{\cos x} + \sqrt{\sin x}} + \frac{\sqrt{\sin x}}{\sqrt{\sin x} + \sqrt{\cos x}} \right) dx. \] ### Step 5: Simplify the combined integral The denominator is the same for both fractions: \[ 2I = \int_0^{\frac{\pi}{2}} \frac{\sqrt{\cos x} + \sqrt{\sin x}}{\sqrt{\cos x} + \sqrt{\sin x}} \, dx = \int_0^{\frac{\pi}{2}} 1 \, dx. \] ### Step 6: Evaluate the integral The integral \( \int_0^{\frac{\pi}{2}} 1 \, dx \) evaluates to: \[ \int_0^{\frac{\pi}{2}} 1 \, dx = \left[ x \right]_0^{\frac{\pi}{2}} = \frac{\pi}{2} - 0 = \frac{\pi}{2}. \] ### Step 7: Solve for \( I \) Now we have: \[ 2I = \frac{\pi}{2} \implies I = \frac{\pi}{4}. \] ### Conclusion Thus, the value of the integral is: \[ \int_0^{\frac{\pi}{2}} \frac{\sqrt{\cos x}}{\sqrt{\cos x} + \sqrt{\sin x}} \, dx = \frac{\pi}{4}. \] ### Final Answer The correct answer is \( \frac{\pi}{4} \). ---
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY OF A FUNCTION

    MAHAVEER PUBLICATION|Exercise QUESTION BANK|21 Videos
  • DETERMINANTS

    MAHAVEER PUBLICATION|Exercise QUESTION BANK|51 Videos

Similar Questions

Explore conceptually related problems

Choose the correct Answer of the Following Questions : int_0^(pi/2) dx /(2+cosx)=

Choose the correct Answer of the Following Questions : int_0^(pi/2) dx/(1 + tanx)

Choose the correct Answer of the Following Questions : int_0^e logx dx=

Choose the correct Answer of the Following Questions : int_0^2 sqrt(4-x^2)dx =

Choose the correct Answer of the Following Questions : int_0^sqrt3 dx/(1+x^2)=

Choose the correct Answer of the Following Questions : int_0^(pi/4) e^x sinx dx =

Choose the correct Answer of the Following Questions : int_0^(pi/2) (sinx dx)/(sinx + cosx)=

MAHAVEER PUBLICATION-DEFINITE INTEGRAL-QUESTION BANK
  1. Choose the correct Answer of the Following Questions : int0^pi (1/(1+s...

    Text Solution

    |

  2. Choose the correct Answer of the Following Questions : int0^(2pi) sqrt...

    Text Solution

    |

  3. Choose the correct Answer of the Following Questions : int0^(pi/2) sqr...

    Text Solution

    |

  4. Choose the correct Answer of the Following Questions : int0^(pi/2) dx ...

    Text Solution

    |

  5. Choose the correct Answer of the Following Questions : int0^e logx dx=

    Text Solution

    |

  6. Choose the correct Answer of the Following Questions : int0^sqrt3 dx/(...

    Text Solution

    |

  7. Choose the correct Answer of the Following Questions : int0^(pi/2) (si...

    Text Solution

    |

  8. Choose the correct Answer of the Following Questions : int0^(pi/2) dx/...

    Text Solution

    |

  9. Choose the correct Answer of the Following Questions : int0^pi dx/(a +...

    Text Solution

    |

  10. Choose the correct Answer of the Following Questions : int0^(pi/2) (si...

    Text Solution

    |

  11. Choose the correct Answer of the Following Questions : int0^infty e^(-...

    Text Solution

    |

  12. fill in the blanks. int2^3sqrtx/(sqrt(5-x)+sqrtx)dx=.

    Text Solution

    |

  13. Evaluate each of the following integral: int0^(pi//2)cos^2x\ dx

    Text Solution

    |

  14. Choose the correct Answer of the Following Questions : int0^2 sqrt(4-x...

    Text Solution

    |

  15. Choose the correct Answer of the Following Questions : int0^(1/2) -1/...

    Text Solution

    |

  16. Choose the correct Answer of the Following Questions : int0^(pi/4) e^...

    Text Solution

    |

  17. Evaluate the following : int(0)^(pi//2)(sinx)/(sinx+cosx)dx

    Text Solution

    |

  18. Find the Definite Integrals : int0^1 dx /sqrt(4-x^2)

    Text Solution

    |

  19. Find the Definite Integrals : int0^(pi/4) (sec^2xdx) /(1 + tan^2x)

    Text Solution

    |

  20. Find the Definite Integrals : int-(pi/4)^0 e^(tanx) sec^2 x dx

    Text Solution

    |