Home
Class 12
MATHS
Choose the correct Answer of the Followi...

Choose the correct Answer of the Following Questions : `int_0^(pi/2) dx /(2+cosx)=`

A

`1/3 tan^(-1)(1/sqrt3)`

B

`2/3 tan^(-1)(1/sqrt3)`

C

1/2

D

2

Text Solution

AI Generated Solution

The correct Answer is:
To solve the definite integral \( \int_0^{\frac{\pi}{2}} \frac{dx}{2 + \cos x} \), we will follow these steps: ### Step 1: Use the substitution for cosine We can use the substitution \( \cos x = 1 - 2 \sin^2\left(\frac{x}{2}\right) \) or the half-angle formula. However, a more straightforward approach is to use the substitution \( t = \tan\left(\frac{x}{2}\right) \). This gives us: \[ \cos x = \frac{1 - t^2}{1 + t^2} \] and the differential \( dx = \frac{2}{1 + t^2} dt \). ### Step 2: Change the limits of integration When \( x = 0 \), \( t = \tan(0) = 0 \). When \( x = \frac{\pi}{2} \), \( t = \tan\left(\frac{\pi}{4}\right) = 1 \). Thus, the limits of integration change from \( 0 \) to \( 1 \). ### Step 3: Substitute into the integral Now substituting into the integral, we have: \[ \int_0^{\frac{\pi}{2}} \frac{dx}{2 + \cos x} = \int_0^1 \frac{\frac{2}{1 + t^2} dt}{2 + \frac{1 - t^2}{1 + t^2}} \] This simplifies to: \[ \int_0^1 \frac{2}{1 + t^2} \cdot \frac{1 + t^2}{2(1 + t^2) + (1 - t^2)} dt = \int_0^1 \frac{2}{3 + t^2} dt \] ### Step 4: Evaluate the integral Now we need to evaluate: \[ \int_0^1 \frac{2}{3 + t^2} dt \] This can be solved using the formula for the integral of the form \( \int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1}\left(\frac{x}{a}\right) + C \). Here, \( a^2 = 3 \) so \( a = \sqrt{3} \): \[ \int \frac{2}{3 + t^2} dt = \frac{2}{\sqrt{3}} \tan^{-1}\left(\frac{t}{\sqrt{3}}\right) \] ### Step 5: Apply the limits Now we apply the limits from \( 0 \) to \( 1 \): \[ \left[ \frac{2}{\sqrt{3}} \tan^{-1}\left(\frac{t}{\sqrt{3}}\right) \right]_0^1 = \frac{2}{\sqrt{3}} \left( \tan^{-1}\left(\frac{1}{\sqrt{3}}\right) - \tan^{-1}(0) \right) \] Since \( \tan^{-1}(0) = 0 \) and \( \tan^{-1}\left(\frac{1}{\sqrt{3}}\right) = \frac{\pi}{6} \): \[ = \frac{2}{\sqrt{3}} \cdot \frac{\pi}{6} = \frac{\pi}{3\sqrt{3}} \] ### Final Answer Thus, the value of the definite integral \( \int_0^{\frac{\pi}{2}} \frac{dx}{2 + \cos x} \) is: \[ \frac{\pi}{3\sqrt{3}} \]
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY OF A FUNCTION

    MAHAVEER PUBLICATION|Exercise QUESTION BANK|21 Videos
  • DETERMINANTS

    MAHAVEER PUBLICATION|Exercise QUESTION BANK|51 Videos

Similar Questions

Explore conceptually related problems

Choose the correct Answer of the Following Questions : int_0^(pi/2) dx/(1 + tanx)

Choose the correct Answer of the Following Questions : int_0^e logx dx=

Choose the correct Answer of the Following Questions : int_0^(pi/2) (sinx dx)/(sinx + cosx)=

Choose the correct Answer of the Following Questions : int_0^(pi/4) e^x sinx dx =

Choose the correct Answer of the Following Questions : int_0^(pi/2) sqrtcosx/(sqrtcosx + sqrtsinx) dx =

Choose the correct Answer of the Following Questions : int_0^(pi/2) (sinx dx)/sqrt(1 + cosx) is equal to

Choose the correct Answer of the Following Questions : int_0^2 sqrt(4-x^2)dx =

Choose the correct Answer of the Following Questions : int_0^sqrt3 dx/(1+x^2)=

MAHAVEER PUBLICATION-DEFINITE INTEGRAL-QUESTION BANK
  1. Choose the correct Answer of the Following Questions : int0^(2pi) sqrt...

    Text Solution

    |

  2. Choose the correct Answer of the Following Questions : int0^(pi/2) sqr...

    Text Solution

    |

  3. Choose the correct Answer of the Following Questions : int0^(pi/2) dx ...

    Text Solution

    |

  4. Choose the correct Answer of the Following Questions : int0^e logx dx=

    Text Solution

    |

  5. Choose the correct Answer of the Following Questions : int0^sqrt3 dx/(...

    Text Solution

    |

  6. Choose the correct Answer of the Following Questions : int0^(pi/2) (si...

    Text Solution

    |

  7. Choose the correct Answer of the Following Questions : int0^(pi/2) dx/...

    Text Solution

    |

  8. Choose the correct Answer of the Following Questions : int0^pi dx/(a +...

    Text Solution

    |

  9. Choose the correct Answer of the Following Questions : int0^(pi/2) (si...

    Text Solution

    |

  10. Choose the correct Answer of the Following Questions : int0^infty e^(-...

    Text Solution

    |

  11. fill in the blanks. int2^3sqrtx/(sqrt(5-x)+sqrtx)dx=.

    Text Solution

    |

  12. Evaluate each of the following integral: int0^(pi//2)cos^2x\ dx

    Text Solution

    |

  13. Choose the correct Answer of the Following Questions : int0^2 sqrt(4-x...

    Text Solution

    |

  14. Choose the correct Answer of the Following Questions : int0^(1/2) -1/...

    Text Solution

    |

  15. Choose the correct Answer of the Following Questions : int0^(pi/4) e^...

    Text Solution

    |

  16. Evaluate the following : int(0)^(pi//2)(sinx)/(sinx+cosx)dx

    Text Solution

    |

  17. Find the Definite Integrals : int0^1 dx /sqrt(4-x^2)

    Text Solution

    |

  18. Find the Definite Integrals : int0^(pi/4) (sec^2xdx) /(1 + tan^2x)

    Text Solution

    |

  19. Find the Definite Integrals : int-(pi/4)^0 e^(tanx) sec^2 x dx

    Text Solution

    |

  20. Find the Definite Integrals : int1^2 dx /x(1+logx)^2

    Text Solution

    |